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INTRODUCTION

Accurate prediction of biological activities for newly

designed molecules is one of the greatest challenges faced in

computer-aided drug research. Because the number of three-

dimensional structures for pharmacologically relevant targets

is continually increasing, the pioneering quantitative struc-

ture-activity relationship (QSAR) methodologies that rely

solely on physico-chemical parameters of substituents in con-

generic series of compounds1 or on molecular interaction

fields (MIF) calculated at discrete points in a three-dimen-

sional (3D) lattice embedding the spatially aligned

compounds, as in the popular comparative molecular field

analysis (CoMFA)2 and comparative molecular similarity

indices analysis (CoMSIA),3 have given way to other compu-

tational methods that attempt to derive as much information

as possible from the structures of the ligand-receptor com-

plexes. In this regard, continuous advances in the fields of

comparative (homology) modeling of proteins of unknown

experimental structure4 and automated ligand docking,5 as

well as in computer power, have made it possible to search for

new putative ligands for many different targets out of pools

containing millions of candidate compounds (chemical libra-

ries).6 Although this "virtual screening" approach has met

with some success the technique is far from being mature

because of several reasons, the most important one possibly

being that the scoring functions used to rank the molecules

and prioritize the possible hits are not accurate enough. When

the number of compounds for a given target is kept under a

few hundred, however, and biological activities are known, as

is usually the case in a typical medicinal chemistry project, it
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ABSTRACT

We present gCOMBINE, a Java-written graphical user

interface (GUI) for performing comparative binding

energy (COMBINE) analysis (Ortiz et al. J Med Chem

1995; 38:2681–2691) on a set of ligand-receptor

complexes with the aim of deriving highly informative

quantitative structure-activity relationships. The essence

of the method is to decompose the ligand-receptor inter-

action energies into a series of terms, explore the origins

of the variance within the set using Principal Component

Analysis, and then assign weights to selected ligand-

residue interactions using partial least squares analysis to

correlate with the experimental activities or binding

affinities. The GUI allows plenty of interactivity and

provides multiple plots representing the energy descrip-

tors entering the analysis, scores, loadings, experimental

versus predicted regression lines, and the evolution of

parameters such as r2 (correlation coefficient), q2 (cross-

validated r2), and prediction errors as the number of

extracted latent variables increases. Other representative

features include the implementation of a sigmoidal

dielectric function for electrostatic energy calculations,

alternative cross-validation procedures (leave-N-out and

random groups), drawing of confidence ellipses, and the

possibility to carry out several additional tasks such as

optional truncation of positive interaction energy values

and generation of ready-to-use PDB files containing

information related to the importance for activity of

individual protein residues. This information can be

displayed and color-coded using a standard molecular

graphics program such as PyMOL. It is expected that this

user-friendly tool will expand the applicability of the

COMBINE analysis method and encourage more groups

to use it in their drug design research programs.

Proteins 2010; 78:162–172.
VVC 2009 Wiley-Liss, Inc.

Key words: 3D-QSAR; comparative binding energy analy-

sis; drug design.

162 PROTEINS VVC 2009 WILEY-LISS, INC.



should be feasible to employ a highly precise energy func-

tion to describe the ligand-receptor interactions and then

derive an accurate QSAR with predictive ability using a

method such as comparative binding energy (COMBINE)

analysis.7

COMBINE employs a number of residue-based inter-

action energies (both van der Waals and electrostatic)

computed on a set of refined ligand-receptor complexes

(rather than MIF calculated on a 3D grid for a set of

unbound superimposed molecules, as is done in CoMFA)

to build a data matrix that is then subjected to multivari-

ate statistical analysis. The key idea is that partial least

squares (PLS) can be used to correlate the computed

energy components (plus additional optional terms such

as receptor and ligand desolvation energies) with the

experimental activities using an expression of the form

shown in Eq. (1):

DG ¼
X2n
i¼1

wiui þ C ð1Þ

where, for n protein residues (or protein residues plus

selected water molecules), there are 2n terms, ui,

each representing either a van de Waals or an electro-

static residue-based interaction energy with the ligand

that contributes to the total binding free energy accord-

ing to a weighting factor, wi, that is determined from the

PLS analysis, and C is a constant. Although other parti-

tioning schemes are also possible,7,8 only whole protein

residues and ligands are supported in the present imple-

mentation. Obviously, if one of these contributions does

not vary significantly among the complexes it cannot be

used to account for activity/affinity differences within the

series however important it may be for the constant term,

C, and the overall free energy of binding. A pictorial repre-

sentation of the COMBINE workflow is shown in Figure 1.

Since its inception in 1995, when the original approach

was developed to account for the differences in activity in

a series of human synovial fluid phospholipase A2 inhibi-

tors,7 the COMBINE method has been applied to the

study of other small molecules binding to different protein

targets (HIV-1 protease,9 human cytochrome P450 1A2,10

human neutrophil elastase,11 HIV-1 reverse transcriptase

(RT),12 acetylcholinesterase,13-15 haloalkane dehaloge-

nases DhlA16 and LinB17) and also to peptide-protein,18,19

protein-protein,20 and protein-DNA interactions.8

The method has acquired some relevance within the

3D-QSAR field and has been reviewed in detail by Wade

et al.,21,22 Damborsky et al.,17 and more recently by

Lushington et al.,23 who have also proposed some ideas

to enhance COMBINE’s capabilities in the future.

An important milestone in the development of the

COMBINE methodology was the incorporation of multi-

ple structures into the analysis, which allows the intro-

duction, at least in part, of target flexibility.8,24-26 All of

these studies demonstrate that qualitatively reliable

COMBINE models can be obtained using multiple

structural representations of the receptor, but care must

be taken when attempting to perform a quantitative

analysis, due to the conformational dependence of the

models. Another interesting issue related to structural

variation entering a COMBINE analysis is the joint study

of affinity and selectivity by use of different protein tar-

gets belonging to the same family, which may provide

important guidelines for drug design. Key examples are

the study by Wang and Wade27 of sialic and benzoic

acid analogs binding to N2 and N9 subtypes of neur-

aminidase and the study of ligand binding to three serine

proteases (trypsin, thrombin, and coagulation factor Xa)

by Murcia et al.28 This approach can, in principle, be

extended to an arbitrary number of receptors from the

same protein family.

COMBINE analysis can also be linked to a docking

algorithm, as shown by Murcia and Ortiz,25 when

screening virtual libraries to derive more reliable bound

conformations of the putative ligands, improve the pre-

dictive ability of the regression models, and increase the

enrichment factors.

It can be seen therefore that COMBINE analysis occu-

pies a privileged position as an effective tool that can aid

in the design and optimization of drug candidates. How-

ever, as recently stated by Lushington et al.,23 the small

number of groups worldwide using COMBINE should

join their efforts to disseminate the method and make it

available to the scientific community. Although our

group promoted this initiative some time ago through

the free Web-based release of the COMBINE code,29 a

user-friendly graphical interface that allows easy manipu-

lation of data and input/output files was lacking. In this

contribution we fill this gap by providing the COMBINE

Figure 1
COMBINE workflow.
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program with a graphical user interface (GUI) written

in Java to ensure portability to different operating

systems that is being released under a scientific/academic

nonprofit and noncommercial license.

MATERIALS AND METHODS

Technical details of the gCOMBINE
application

gCOMBINE is the GUI developed as a user-friendly

wrapper to the original command-line COMBINE pro-

gram. The GUI has been written in Java30 language

(v. 1.6.0_10), which ensures platform portability.

Graphics functionality and interactivity have been added

with Java Foundation Classes (JFC) and Swing compo-

nents, respectively. For development of the GUI the Net-

Beans31 IDE (Integrated Development Environment) 6.1

was used and the Swing Application Framework32 was

included. The different charts were generated using the

JFreeChart33 1.0.11 and JCommon34 1.0.14 libraries.

Both are distributed under a GNU Lesser General Public

License.35 These libraries allow gCOMBINE to generate

interactive charts with the most relevant data for easy

manipulation and analysis. Because the GUI is platform-

independent and the COMBINE program is written in

standard GNU Fortran, the complete application (COM-

BINE 1 gCOMBINE) can be used under Linux, Win-

dows or Mac operating systems with the gcc compiler

(v. 3.4.6 was employed in our case). gCOMBINE has an

object-oriented design based on the Model-View-Con-

troller (MVC) pattern.36 The main class for the Model is

CombineModel. An instance of this class stores the

information about a specific model (or configuration)

generated from a COMBINE run: name for the model, a

description comment, the working folder, the configura-

tion parameters, the output files, and tables and charts.

The parameters are stored on an instance of the Parame-

ters class, which uses the ComplexesListItem objects to

keep the different ligand-receptor complexes related to

the COMBINE model under study. The tables and charts

are panels generated by the static methods of the classes

CombineTables and CombineGraphs, respectively, taking a

CombineModel instance as input. The View is launched

by the CombineGUIApp class that creates an instance of

the CombineGUIView class. This instance acts as a store

for the different graphical objects and also as the

Controller for the different actions (including internal

validations) that can be performed when interacting with

the objects. An internal class (CombineThread) is used to

run the COMBINE program in a different execution

thread to avoid the blockade of the GUI interface while

COMBINE is running. CombineThread uses an instance

of the CombineWrapper class to prepare the COMBINE

execution: it launches the calculation, controls the pro-

cess (taking the logs with the StreamGlobber class) and

loads the results upon completion of the run. Three

other classes are used through the life cycle of the

application: a) CombineConstants (to contain different

constants); b) CombineException (to propagate custom-

ized errors and warnings); and c) Useful (to store some

common methods).

The statistics behind COMBINE

As in any other method focused on obtaining a quan-

titative view of structure-activity relationships, the core

of COMBINE is a matrix containing structure-related

energy descriptors (variables) to be correlated with bio-

logical activities or binding energies. The statistical

method underlying COMBINE analysis is well known

and widely accepted by the scientific community, and

therefore it has been intensely reviewed.37 However, a

brief summary of the main steps and ideas follows.

Construction of the X matrix

The X matrix contains the entire set of variables

describing the interaction energies between each ligand

and every protein residue for all the complexes. Usually

these are van der Waals interactions calculated using a

molecular mechanics force field (typically AMBER) and

electrostatic interactions calculated using point charges

and either Coulomb’s law (and a constant or distance-de-

pendent dielectric definition) or the more elaborate and

accurate generalized born (GB)38 or Poisson-Boltzmann

(PB)39 methods. In addition, desolvation energy terms

for both receptor and ligand can also be incorporated as

‘‘external variables’’. For each complex only two AMBER-

type files are required, one containing the atomic

coordinates (.crd extension) and the other containing the

topology (i.e. atom connectivity), atom types and force-

field parameters (.top extension). Alternatively, the user

can generate the X matrix externally in the format

described in the User Guide and load it into the program.

Pretreatment of the X matrix

To reduce the number of variables while keeping all

the relevant information within the X matrix, those inter-

action energy values with a standard deviation below a

user-defined cut-off, which can be safely assumed not to

contribute to the overall variance in activity, can be

removed (Pretreatment cut-off, see below). Positive

energy values, which in some cases could arise from

force-field inconsistencies or modeling errors, can

optionally be truncated to zero (Pretreatment option, see

below). Scaling of the variables can also be performed

using two different approaches (Scaling option, see

below): (i) standard scaling, where the mean value over

the whole set of variables is subtracted from each variable

and divided by the standard deviation (it is therefore

similar to a Z-score), and (ii) block scaling, by means of
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which the mean value of the variables is subtracted from

the one being scaled and divided by the standard devia-

tion of these variables (again, similar to a Z-score but

using a group of variables).

PLS regression

This technique combines and generalizes features from

PCA and Multiple Linear Regression (MLR) in the sense

that not only orthogonal Principal Components (PC) are

extracted, as in PCA, but also a fitting procedure is per-

formed to describe the activities of the compounds (the

dependent variable), as in MLR. There are two initial mat-

rices in a COMBINE analysis: (i) a matrix containing the

independent variables (interaction energies, and possibly

additional variables such as desolvation energies), the X

matrix [Eq. (2)], and (ii) a matrix (column vector) with

the dependent variable (activities), the Y matrix [Eq. (3)].

X ¼

E1
1 E1

2 . . . E1
M V 1

1 V 1
2 . . . V 1

M A1
1 . . . A1

S

E2
1 E2

2 . . . E2
M V 2

1 V 2
2 . . . V 2

M A2
1 . . . A2

S

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

EN
1 EN

2 . . . EN
M VN

1 VN
2 . . . VN

M AN
1 . . . AN

S

8>>>>>>>>>>>>:

9>>>>>>>>>>>>; ð2Þ

where E i
j, V

i
j, and Ai

j are the electrostatic, van der Waals,

and additional variables, respectively. N is the number of

compounds, M is the number of residues in the protein,

and S is the number of additional variables.

Y ¼
y1
y2
. . .
yN

8>>>>>>>>>:
9>>>>>>>>>; ð3Þ

where yi is the individual activity of compound i. The PLS

analysis starts by decomposing the X and Y matrices into

one score matrix, T, and two different loading matrices,

P and Q [Eq. (4)], using the iterative NIPALS algorithm40:

X ¼ TPT Y ¼ TQT ð4Þ

The loading matrices P and Q contain information

about the variables in the so-called LV or PC space. These

are orthogonal vectors obtained as linear combinations of

the original variables in the X matrix. The coefficients in a

given PC provide information on the relative weight of the

different terms and can be used to deduce the relevance of

each individual ligand–residue interaction to explain the

variance in activity/affinity. On the other hand, the score

matrix T contains information about the compounds,

described in terms of their projections onto the PCs. The

PC space is normalized and has a mean of zero, so com-

pounds with high scores should be checked as they could

behave as outliers. In addition, clusters of compounds can

be detected. A plot of the regression line between the

experimentally determined and theoretically calculated

activity/affinity values and calculation of the regression

coefficient [r2, Eq. (5)] allow the user to visualize the qual-

ity of the fit for the training set compounds, and also for

the excluded (not used) or test compounds.

r2 ¼
PN
i¼1

ðyi � yÞðŷ i � hŷiÞ
� �2
PN
i�1

ðyi � yÞ2 PN
i¼1

ðŷ i � hŷiÞ2
ð5Þ

where hŷi ¼
PN
i¼1

ŷi

N
.

Cross-validation

This method, which is used to check that the derived
correlation is not spurious and to assess the robustness of
the resulting statistical model, consists of predicting the
dependent variable for some complexes that are not
included in model derivation. Briefly, if C is the whole set
of N compounds (C 5 {C1,. . .,CN}) with associated activ-
ities Y (Y 5 {y1,. . .,yN}), the method builds a number of
subsets of s elements from C (when s 5 1 it is the
commonly employed Leave-One-Out option) and sets
them apart for their activities/affinities to be predicted
later, thus making up an internal test set. The compounds
represented by s can be selected by following a predeter-
mined sequential order or can be randomly assigned to a
predetermined number of groups (Cross-validation
Method option, see below). In any case, C can be split into
k subsets Si (Si 5 {Si1,. . .,Sis}) where the subscript i repre-
sents any subset number from 1 to k. Numerically, k is the
nearest integer greater than or equal to N/s (the ratio
between the total number of compounds, N, and the num-
ber of those making up each subset, s). Usually, the last
group would have less than s elements as it contains the
remaining compounds. In the next step, k PLS regression
models are built: model 1 with all N compounds except
for those in S1, model 2 with all N compounds except for
those in S2, and so on. In each case, the activities for com-
pounds in S1, S2. . . will be estimated from their respective
models (ŷ1; . . . ; ŷN ) and at the end of the process a list of

predicted activities for all the compounds will be obtained.

The performance is then quantified by the q2 cross-vali-

dated correlation coefficient [Eq. (6)]:

q2 ¼ 1�
PN
i¼1

ðyi � ŷ iÞ2

PN
i¼1

ðyi � yÞ2
ð6Þ

where �y is the average value of the activity

(y ¼ PN
i¼1 yi=N). In simple words, this metric describes

the amount of variance in the dataset that is explained by

the model. Besides, a standard deviation of error of pre-

dictions [SDEP, Eq. (7)] and an average absolute error

[AAE, Eq. (8)] are also calculated.
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SDEP ¼
XN
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð̂yi � yiÞ2

N

s
ð7Þ

AAE ¼
XN
i¼1

��̂yi � yi
��

N
ð8Þ

It can be argued that, despite the cross-validation pro-

cedure, the resulting model fits the data just by chance

due to the selection of a fortuitous equation out of the

huge amount of different PLS regression models that can

be constructed with the thousands of variables contained

in the X matrix. To check against this possibility the

affinities/activities of the compounds can be randomly

reassigned (permutation of activities or Y-randomization)

to prove the point that in this case it is usually not

possible to derive an acceptable model. gCOMBINE

allows the user to carry out this task thorough the Y-ran-

domization option in the main window (see below). This

test is performed 100 times and therefore it is quite

time-consuming.

Selection of the best model

As successive components are extracted from the X

matrix, a check is made to estimate the amount of var-

iance that is recovered (it must be borne in mind that

the PLS method attempts to explain the variance not

only in the X matrix, as does PCA, but also in the Y ma-

trix). Although there is not a strict rule to select the best

model resulting from a PLS analysis, the general guidance

is to study the evolution of both the cross-validated

correlation coefficient [q2, Eq. (6)] and the standard

deviation of the errors in prediction [SDEP, Eq. (7)].

gCOMBINE provides the user with a graphical descrip-

tion showing the evolution of the main chemometric

indices as new components are being extracted (five by

default, and up to 10, Number of Latent Variables

option, see later) to facilitate the decision on the optimal

dimensionality to choose for further analysis.

External validation

The best way to validate a PLS model is to challenge it

with an external set of modeled complexes and compare

the predicted affinity/activity values for the bound

Figure 2
gCOMBINE main window. Letters a–d refer to the four main data blocks (see text).
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ligands with the actual ones. This is accomplished in

gCOMBINE by feeding the program with additional

complexes that are marked as ‘‘Test’’ in lieu of ‘‘Training’’

in the Type column (see Main Menu in Fig. 2).

RESULTS AND DISCUSSION

The application

gCOMBINE has been designed bearing in mind the

need for a simple and easy-to-use chemometric tool.

Once that the program has been launched it displays a

menu bar with two submenus (File and Help) and a

tabbed panel with two tabs (see Fig. 2): one for the con-

figuration of the model (COMBINE Model) and the other

one to manage the results (Results). The menu bar, under

File submenu, contains four options: (a) New Model, to

clean the data from the tabs, (b) Load Model, to load a

previously saved model into the tabs, (c) Save Model, to

save the current model into a specific file, and (d) Exit,

to close the application. Help submenu offers informa-

tion about the original COMBINE publication, the main

COMBINE author and contact information. The COM-

BINE Model tab can be divided into four main areas (a

through d in Fig. 2): (a) the top part where the user can

select the folder for the COMBINE executable and the

working folder where the complexes are stored. Clicking

on the RUN COMBINE button will start the calculation,

(b) a section where the user can introduce commentaries

related to the job into two boxes, Name and Description,

(c) this section allows the user to load parameters from a

previous calculation or to save the current parameters

being used thorough the Load/Save Parameters buttons.

All the parameters entering the model are configured

here (the reader is referred to the ‘‘Materials and Meth-

ods’’ section for the definition of the different issues

described here): Y-randomization (No by default),

Scaling (No by default), Interaction Matrix (it can be

calculated and written out by gCOMBINE or read in

from an external file), Number of Latent Variables (5 are

extracted by default), validation method (Leave N Out or

Random Groups), Type of Electrostatic Model (uniform

dielectric constant, Goodford’s implementation of the

images method,41 a distance-dependent dielectric con-

stant, PB electrostatic interaction energies read from an

external file, and a sigmoidal model42), Dielectric

Figure 3
gCOMBINE Results tab showing the evolution of the chemometric indices in graphical (Top) and tabular form (Bottom).
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Constant value (four by default), Number of External

Variables, Pretreatment of the data and the Pretreatment

cut-off value, and (d) the complex area, where the user

can add/remove/load/save complexes from/to a file (Add/

Remove Complex and Load/Save from/to File buttons).

Below these buttons a table is shown with the following

information: the type associated to each complex

(Training, Test, or Not Used, as defined by the user),

which can be changed at any time to test alternative

models, the File Name containing the complex, the

Ligand Name, the Pharmacological Activity, and one

column for each external variable to be considered. Once

the parameters and the complexes have been read in and

after the program begins to run, the application checks if

all the parameters needed have been supplied, if they

have valid values, and if the required files exist.

The user can stop the execution or wait until comple-

tion of the run. In this latter case, if no errors are found,

the application focuses on the Results tab (see Fig. 3)

where the user can have access to different tables and

charts grouped by nodes and sub-nodes: a summary of

each model (both a graphic showing the evolution of the

chemometric indices and a table containing these indices

are produced), PLS coefficients plots (Fig. 4), predictions

(for each model a graphic of experimental vs. predicted

activity values is shown, Fig. 5 panel a), loadings and

scores plots (Fig. 5 panels b and c, respectively), and a

plot of the interaction energy variables entering the PLS

decomposed on a per-residue basis (a very useful plot to

detect anomalous energy values, Fig. 5 panel d). The user

can interact with the graphs in several ways: zoom in/

out, see tooltips for specific data, set tags, change the

appearance, save them as images, print, and so forth.

Finally, there is a Logs node to keep track of the program

messages.

Testing gCOMBINE

Among the many publications of successful COMBINE

analysis, we have chosen two of them for testing the

graphical implementation reported herein. The first one

is the set accompanying the original distribution, which

employed 48 (32 for the training set and 16 for the test

set) inhibitors of human immunodeficiency virus Type 1

Figure 4
Plots showing the weights assigned to the residue-based van der Waals and electrostatic interaction energy values in a COMBINE model made up

of four principal components to account for the differences in activity in the HIV-1 protease inhibitor series.
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(HIV-1) protease.9 In the second example, also related to

another pharmacologically relevant HIV-1 target, namely

RT,12 we will show how externally generated electrostatic

energy variables, as calculated with the DelPhi soft-

ware,44 can be incorporated into the model.

1. Two main issues motivated the first of these two stud-

ies: (a) bare ligand-receptor interaction energies (as

computed by Merck researchers using the MM2X

force field) per se correlated quite well (using linear

regression analysis, r2 5 0.74) with experimentally

determined enzyme inhibition data (IC50 values, that

is, compound concentrations giving rise to 50% inhi-

bition of enzyme activity).44 Moreover, the predictive

ability of such a linear model on 16 test set com-

pounds (not included in model derivation) was also

remarkable (q2 5 0.75) with an average absolute error

around 1 across a range of 5 log units, and (b) the

realization that no improvement upon incorporation

of either solvation effects (using a continuum descrip-

tion) or using another force field (CHARMM in their

case) was achieved. Taking these two issues into

account, the two main objectives addressed by the

Figure 5
Selected screenshots from the gCOMBINE program displaying: a) experimental versus predicted activity plot, (b) plot showing the contributions

(loadings) of the original variables to the principal components shown, (c) scores plot (the applicability domain is drawn as a confidence

ellipse43), (d) plot of the original variables entering the PLS analysis following decomposition of the ligand-receptor interaction energy on a

per-residue basis.

Table I
Chemometric Indices for the Different Models in the HIV-1 Protease

Study Discussed in the Text

Model Objects Variables LV r2 q2 SDEPCV SDEPex

LMM2X 32 1 1 0.74 0.75 1.00
LAMBER 32 1 1 0.81 0.79 0.61 1.08
CAMBER 32 48 2 0.89 0.70 0.72 0.83
gCAMBER

a 32 48 2 0.89 0.70 0.72 0.80

aCalculated with gCOMBINE.
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COMBINE analysis methodology were (i) to check for

possible dependencies of the correlation on the force

field used, and (ii) to try and develop more accurate

QSAR models. In this exercise, it was shown that

similar results could be obtained when comparable

models were built within the framework of the

AMBER force field, so no force-field dependencies

were detected (see the chemometric indices for LMM2X

and LAMBER in Table I). On the other hand, remark-

able improvements were achieved through the use of

COMBINE models (see the original article), especially

when partial desolvation effects for ligand and recep-

tor upon complex formation were included using a

continuum description (by solving the PB equation)

and the standard Coulombic distance-dependent elec-

trostatic term was replaced with solvent-corrected val-

ues calculated for each residue. Interestingly, the main

conclusion of this work was that simply replacing the

Coulombic term with the continuum electrostatics

description and including the desolvation effects did

not lead to a significant improvement when MLR was

used but the performance of the corresponding COM-

BINE model was dramatically enhanced when the con-

tinuum electrostatic interactions were employed.

Although different improvements over the standard

Coulombic term were included in the original article

we will restrict ourselves here to the simplest (and

more widely used) case as our intention is to repro-

duce the data rather than recapitulating the previously

published comparison. In particular we show the

reproducibility of what was called the CAMBER model,

where van der Waals and electrostatic contributions

(the latter, a straightforward Coulombic term using a

dielectric constant of four) were taken directly from

the AMBER force field using the ANAL module. The

results cannot be exactly the same, though, because

the cross-validation technique contains a random

component: the compounds are randomly assigned to

one of five groups of approximately the same size,

each group in turn is excluded from the analysis, and

the whole procedure is repeated 20 times.

Nevertheless, clearly comparable results were obtained

(see chemometric indices for CAMBER and gCAMBER in

Table I).

Finally, the relative weight assigned to individual

residue-based interactions (van der Waals and electro-

static) by the COMBINE model can be color-coded

and displayed on a surface representation of the pro-

tein, as shown in Figure 6.

2. The second article revisited here entailed the study of

27 6-arylsulfonyl-2-aminobenzonitrile derivatives

synthesized and tested as second-generation non-

nucleoside HIV-1 RT inhibitors (NNRTI).12 In this

case there was a wealth of experimental data including

information about activity on RT enzymes bearing

different mutations at the NNRTI binding site.

COMBINE models were obtained to quantitatively

characterize the observed structure-activity data and

possibly to account for the effect of some of the

mutations. Ligand-residue van der Waals interaction

energies were calculated using AMBER parameters

(parm99) while their solvent-corrected electrostatic

counterparts were obtained by solving the PB equa-

Figure 6
Visualization in PyMOL (http://pymol.sourceforge.net/) of the PLS regression coefficients plotted in Figure 4. The semitransparent surface

enveloping the HIV-1 protease target has been spectrum-colored using the van der Waals (a) and electrostatic (b) PLS coefficients from

the fourth column (B-factor) in the PDB file generated by gCOMBINE.
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tion (as implemented in DelPhi). Also, the desolvation

changes incurred by ligands and receptor upon com-

plex formation were included as additional external

variables. For testing gCOMBINE, these electrostatic

energy calculations were performed using DelPhi in

stand-alone mode and then loaded into the applica-

tion (Type of Dielectric Model menu, Poisson-Boltz-

mann from.dph files option, see Figure 2 block c). By

doing this, the published results were accurately repro-

duced with only minor variations being obtained, as

expected, when random groups were employed (see

Table II). Relevant results are presented in Figure 5:

loading and scoring plots (panels b and c, respec-

tively), interaction energy variables entering the PLS

analysis (panel d), and the evolution of r2, q2, and

SDEP (Table II) for the whole set of 27 NNRTI com-

plexes as the number of PC being extracted by

gCOMBINE increases. As in the previous example, no

attempt will be made here to discuss or compare the

results, which are already published, but it is clear

that gCOMBINE faithfully reproduces the data.

CONCLUSIONS

The objective of this article has been to provide the

COMBINE analysis method with an easy-to-use GUI that

improves on the original command-line style implemen-

tation. The software is written in Java to allow platform

portability and is made freely available to academic and/

or public research institutions from a public web site

(http://ub.cbm.uam.es/gCOMBINE) under an Academic

License. This has been done with the idea of disseminat-

ing a user-friendly tool among the scientific community

to encourage the use of a program that has proven useful

in many areas related to ligand binding, structure-activity

relationships and drug design.
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