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We have used a published set of inhibitors of HIV-1 pro-
tease1 to build a COMBINE-type structure-based QSAR
model with good predictive ability (r2 5 0.90,q2 5 0.69).2

Since the compounds in the training series exhibit most of
their structural variability on one-half of the pseudosym-
metrical binding cavity and only one binding orientation
was explored for each molecule, the model describes mainly
the effect of the structural changes on interactions involving
only one-half of the binding cavity (pockets S19 and S29).
Thus, the model cannot be expected to give accurate pre-
dictions for new compounds exhibiting structural variation
in both halves. The model does in fact show a tendency to
underpredict slightly the biological activity of the molecules
in the external test set. In an attempt to improve the quality
of the model, both possible orientations of the ligands are
now considered so that structural variation takes place in
all binding pockets. One possibility would have been to
build an additional set of complexes with the inhibitors
docked in a reversed orientation. The alternative we have
explored, however, consists of manipulating the data matrix
describing the interaction energies so that each row is
duplicated and the order of the variables in the duplicated
rows is swapped between subunits. This simple approach
has produced a new model that is similar in quality to the
original model (r2 5 0.89,q2 5 0.64) but lacks the tendency
to underpredict the activity of the compounds in the external
set. Moreover, since equivalent residues are assigned equiv-
alent weights, the model is insensitive to ligand orientation
and is easier to interpret. © 1998 by Elsevier Science Inc.

INTRODUCTION

The biological activity of a compound largely depends on its
interaction energy with the receptor. Accurate estimations of

this interaction energy would have important uses for the
prediction of the activity of novel compounds in advance of
their synthesis. Unfortunately, even when large amounts of
structural information are available, such interaction energies
are not easy to calculate accurately.

When dealing with series of closely related compounds, it is
possible to build simple models that relate biological activity to
energy of interaction computed with molecular mechanics. An

Color Plate for this article appears on page 389.
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Figure 1. Correlation between experimental and calculated
activities (pIC50 values) for the training set (filled squares)
and the prediction set (open triangles), using model Csingle.
The increase in slope of the line representing the least-
squares regression fit for the compounds in the prediction
set (dashed) with respect to a perfect fit (solid) is indicative
of a tendency to underpredict.
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interesting example is the series of HIV-1 protease inhibitors
published by Holloway et al.1 for which a linear regression
model was reported between inhibitory potencies (pIC50) and
ligand–receptor interaction energies calculated with a simple

force field. More recently, we have used the same data set to
build a model, also relating biological activities and interaction
energies, which partitions these energies into a number of
residue-based contributions.2 This methodology, which we
term COMBINE (COMparative BINding Energy)2–4 analysis,
is essentially a 3D QSAR method that uses structures of the
ligand–receptor complexes. Ligand–receptor interaction ener-
gies, computed within the framework of the AMBER suite of
programs5 and broken down into residue contributions, were
supplemented with estimations of the electrostatic contribution
to the desolvation of ligands and receptors using a continuum
method.6 All these energy values were then correlated with the
biological activity using partial least squares (PLS) regression
analysis.

HIV-1 protease is a homodimeric enzyme that, in its com-
plex with many inhibitors, has the interesting peculiarity of
being pseudosymmetrical.7 In such a situation, the ligands can
be inserted into the binding site in two alternative and nearly
equivalent orientations, but usually just one of the two possi-
bilities is considered. The COMBINE model obtained using
only one orientation (Csingle) is reasonably good but is limited
in two respects. First, since the model computes the contribu-
tion of each ligand–residue interaction to the activity, unequal
importance is assigned to equivalent residues in subunits A and
B, which are only arbitrarily distinguishable. Second, when Csingle

is used to predict the activity of novel compounds, theirbiological
activity tends to be slightly underpredicted (Figure 1).

These limitations arise from the fact that the compounds in
the training series exhibit structural variation mainly on one
side of the structure (P19 and P29 substituents) (Color Plate 1a).
Consequently, the model is trained to recognize the influence
on the activity of structural changes taking place on only
one-half of the molecules but receives no information about the
other half. However, as mentioned above, this class of ligands
can be docked into the binding site in two alternative and
equivalent orientations. Thus, if the ligands were considered in
both orientations, the model would “learn” the effect of intro-

Figure 2. Schematic representation of models Csingleand Cduplo. Binding sites on the enzyme are denoted S1, S2, S19, and S29
whereas substituents on the inhibitors are labeled P1, P2, P19, and P29. Note that the two alternative orientations of the
molecules in Cduplo are related by a 180° rotation.

Figure 3. Scheme representing the “copy and paste” pro-
cedure used to derive Cduplo from the original Csingleenergy
decomposition matrix. See Methods for details.
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Table 1. HIV-1 protease inhibitors included in the training seta

No. Chemical structure Exp. pIC50 No. Chemical structure Exp. pIC50

(continued)
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ducing structural variability on both sides of the binding cleft.
In our example, this means that the model would adequately
represent the interactions of the ligand substituents with equiv-
alent residues from each of the two HIV-1 protease subunits
(Color Plate 1 and Fig. 2).

The aim of this work is to obtain a model that adequately
considers the duality of the potential interaction in order to
check its sensitivity to ligand orientation within the receptor-
binding site and its predictive ability.

METHODS

To consider both alternative orientations ofn ligands within the
binding site, the most straightforward approach would be to
actually build 2n complexes. Every compound would then be
included in the analysis twice. However, since the target is
symmetrical, it can be argued that the interactions of the
variable part of the ligands with subunit A in one orientation
can be considered equivalent to the interactions of the same

Figure 4. Plots of experimental versus calculated inhibitory activities (pIC50 values) for the compounds belonging to the
training set (open squares) and those in the prediction set (filled triangles). Two possible orientations are considered for the
compounds in the prediction set. Model Csingle(a) provides two different sets of predicted activities for each orientation, linked
together by a horizontal line, whereas model Cduplo (b) yields identical values for both orientations.

Table 1. (Continued)

No. Chemical structure Exp. pIC50 No. Chemical structure Exp. pIC50

a See Refs. 1 and 2.
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substituents with subunit B when the ligand binds in the alter-
native orientation. Therefore, both alternative binding modes
can be represented with a simple “copy and paste” of the matrix
describing the interaction (Figure 3). The alternative orienta-

tion is thus simulated by duplicating and swapping the blocks
of variables that describe the electrostatic and steric contribu-
tions of every residue in each subunit to the ligand–receptor
interaction energy. The descriptors involving interactions with

Table 2. HIV-1 protease inhibitors included in the prediction seta

No. Chemical structure Exp. pIC50 No. Chemical structure Exp. pIC50

a See Refs. 1 and 2.
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residues Asp A25 and Asp B25 were not duplicated as these
aspartic acid residues cannot be considered equivalent owing to
their different protonation states.8 As in Csingle, two extra terms
were included to describe the electrostatic contribution to the
desolvation of both the ligand and the receptor.2

The new model (Cduplo) was built using the same method-
ology employed to derive Csingle, as described in Ref. 2. Both
models were produced using compounds1–34(Table 1) as the
training set and compounds35–50(Table 2) as the prediction
set. The steric contributions to the ligand–receptor interaction
energies were computed using the AMBER force field,9

whereas the electrostatic contributions to both the ligand–
receptor interaction energies and the desolvation of ligands and
receptor were computed using DelPhi.6 Data pretreatment and
PLS model building and validation were performed using
GOLPE 3.0.10 The quality of models Csingle and Cduplo is
summarized in Table 3.

RESULTS

Advantages of the new model: Predictive ability

Table 3 shows that the quality of models Csingle and Cduplo is
comparable. The ability to predict the activities of the external
set, in the binding orientation studied, is better for Csingle

(SDEPext 5 0.59 compared with SDEPext 5 0.79 in Cduplo).
However, if the compounds in the external prediction set are
considered in both possible binding orientations, so that the
number of objects and activity values is duplicated, Csingle

yields a larger error in the predictions (SDEPdup 5 1.54)
whereas Cduplo is insensitive to ligand orientation (SDEPdup 5
0.79).

It must be borne in mind that the training set consists of
molecules in which substituent variation is limited to just half
of the ligand, so that when only one binding orientation is

Figure 5. Weighted PLS pseudocoefficients for each of the van der Waals and electrostatic energy variables studied for models
Csingle (a) and Cduplo (b). On the horizontal axis, the variables are ordered sequentially within subunit A (1–99, darker
background) and subunit B (100–198, lighter background), followed by the interactions with the water molecule (199). Note
the equivalence between residues from both subunits in model Cduplo except for residues Asp A25 and Asp B25.

Table 3. Comparison of models Csingle and Cduplo
a

Model Objects Variables LV r2 q2 SDEPcv SDEPext SDEPdup

Csingle 32 47 2 0.90 0.73 0.69 0.59 1.54
Cduplo 64 56 2 0.89 0.72 0.69 0.79 0.79

a r2, Squared correlation coefficient;q2, squared cross-validated correlation coefficient (using five randomly assigned groups); SDEPcv, standard deviation
error of the predictions, as obtained from the cross-validation analysis; SDEPext, standard deviation error of the predictions, obtained from the prediction of
the external prediction set; SDEPdup, standard deviation error of the predictions, obtained from the prediction of the external prediction set, but considering
both orientations for each ligand.
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considered the resulting QSAR model (Csingle) has learned
about the effect of differences from interactions with just one
side of the receptor. In the Cduplomodel, these differences in the
ligand are considered as making contributions to interactions
with both halves of the receptor. In this way, the QSAR model
has been trained to recognize changes in both sides of the
ligand, and this is why Cduplo performs better on the external
prediction set in which there are changes on both sides of the
ligand. As can be seen from the plots represented in Figure 4,
model Csingle gives two different activity values to each com-
pound, one for each orientation (Figure 4a). One of them is
consistently much lower than the experimental value whereas
the other is much closer, even though a tendency to underpre-
dict is also observable. The reason for this behavior is related
to the characteristics of the training series: the model is able to
recognize the influence on the activity of just one-half of the
molecules. Therefore, when challenged with molecules dis-
playing variation on both halves, the predictions are more
accurate when the part of the ligand showing more variation is
oriented toward the best represented part of the receptor, but
even so the model will not recognize the increase in affinity
provided by the other part. On the other hand, Cduplo produces
unique, consistent data of biological activity (Figure 4b). More-
over, the predicted residuals do not show any significant bias of
the model to overpredicting or underpredicting the activity of
external compounds.

Advantages of the new model: Interpretability

COMBINE models are useful to highlight those receptor resi-
dues whose interaction with the ligand contribute most to
increasing the biological activity.2–4 This information can be
represented in a simple fashion in the form of weighted PLS
pseudocoefficients, as shown in Figure 5. It is apparent that
model Csingle(Figure 5a) assigns different importance to equiv-
alent residues of subunits A and B (except for Asp A25 and
Asp B25, which are not equivalent),8 whereas in the new Cduplo

model (Figure 5b) a unique value is given.

DISCUSSION

The rationale behind a COMBINE analysis is to accurately
translate distinct ligand–receptor interaction energies from a set
of complexes into a large number of informative variables in
order to find a model that correlates these descriptors and the
biological activity. The hope is that the data matrix can capture
the essence of all the structural changes in the compounds
studied (“training set”), and that the resulting quantitative
model will highlight those variables that are more important for
improving the activity.2–4 Once this information is gained, it
can be used to advantage in the design of new structural
changes. However, the quality of a QSAR model is limited by
the quality of the training series, and in the original work,1,2 the
arbitrary assumption of studying only one of the two alternative
binding modes may have limited the ability of the model to
give accurate predictions for new compounds.

In the present study, since each compound is included in the
training set twice (in both orientations and with the same
activity value), the method is forced to produce an answer that
respects the pseudosymmetry of the target. Thus, the solution is
constrained to reproduce an already known characteristic of the
ligand–receptor complex. Such restrained solutions have the

advantages of being less sensitive to the noise in the descriptor
variables and of producing more robust models. In addition,
since the number of objects is duplicated, the variables-to-
objects ratio is decreased.

It should also be emphasized that the method described here
requires neither additional model building nor extra experimen-
tal work, as it simply manipulates already existing data. The
numerical manipulation of the data matrix is simple and can be
carried out on a standard spreadsheet or using small purpose-
written programs.

The method reported here has a limited range of application
because there are few biological receptors showing similar
symmetric characteristics. However, it can be applied to dif-
ferent series of HIV-1 protease inhibitors. Also, it should be
noted that the method described is not limited to COMBINE
models and can be applied in the context of other 3D QSAR
methodologies,11 such as CoMFA, GRID/GOLPE, etc.

CONCLUSIONS

The procedure described represents the incorporation of sym-
metry constraints into a COMBINE 3D QSAR model. The
method is performed by a simple manipulation of the data
matrix already obtained and results in a model with comparably
good predictive ability that is easier to interpret.
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