
Reliability of Comparative Molecular Field Analysis Models: Effects of Data
Scaling and Variable Selection Using a Set of Human Synovial Fluid
Phospholipase A2 Inhibitors†

Angel R. Ortiz,*,‡,§ Manuel Pastor,|,§ Albert Palomer,⊥ Gabriele Cruciani,| Federico Gago,§ and
Rebecca C. Wade*,‡

European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany, Departamento de Fisiologı́a y
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The effects of data pretreatment, data scaling, and variable selection on three-dimensional
quantitative structure-activity relationships derived by comparative molecular field analysis
(CoMFA) using the GRID energy function were studied in detail for a set of inhibitors of the
human synovial fluid phospholipase A2 (HSF-PLA2). The quality of the models was evaluated
for predictive power and ability to map the receptor binding site by (a) comparison of predicted
and experimental activities using cross-validation and external validation sets and (b)
comparison of the regions selected in space in the CoMFA models with a crystal structure of
a HSF-PLA2-inhibitor complex, with optimized comparative binding energy analysis (COM-
BINE) models (Ortiz et al., 1995) and with structure-activity relationships derived previously
for different sets of compounds. It is found that (1) data scaling and dielectric modeling strongly
influence CoMFA results. Unscaled data and a uniform dielectric constant of 4 are well suited
to GRID-CoMFA studies for the present compound set. (2) The GOLPE and Q2-GRS variable
selection methods select variables in roughly the same regions in Cartesian space, but they
produce different models in chemometric space and differ in their sensitivity to data scaling
and pretreatment and their tendency to overfitting. (3) CoMFA models are consistent with
COMBINE models in that they identify approximately the same intermolecular interactions
as relevant for activity. Our study provides support for the qualitative receptor-mapping
properties of CoMFA models and for the validity of variable selection when applied with care
and also provides guidelines for how to evaluate the quality of CoMFA models.

Introduction

One important aim of drug design is to correlate the
three-dimensional (3D) structure of drug molecules with
their biological activities, i.e., to derive 3D-QSARs.1,2
The goal is to be able to design and predict the biological
efficacy of new molecules prior to synthesis. At present,
one of the most frequently used tools for this task is
comparative molecular field analysis (CoMFA).3 It
entails the superposition of a set of compounds whose
activities have been measured, the computation of
interaction energy fields for probes on a grid around
each compound, and partial least squares (PLS) statisti-
cal analysis to correlate fields with activity and to detect
regions around the molecules where there are interac-
tions that have an important impact on activity. It does
not require information about the 3D structure of the
receptor. However, even when the 3D structure of the
receptor is available, the derivation of structure-

activity relationships for a family of ligands may aid
lead optimization. In this context, we have recently
reported4 a new approach for the prediction of ligand
binding affinities based on the analysis of the relation-
ship between the binding affinity of a set of known
ligands and selected interaction energies with the
receptor. This method, referred to as comparative
binding energy analysis (COMBINE analysis), makes
use of the same statistical tools as CoMFA, but energetic
information derived from the structures of ligand-
receptor complexes is used to produce better regression
models. An advantage of COMBINE analysis compared
to molecular mechanics calculations alone is that (like
CoMFA analysis) it weights pairwise interaction ener-
gies between the individual atoms of the receptor and
ligand in order to improve the correlation with binding
affinity. This weighting procedure can serve to filter
out some of the inaccuracies of potential energy func-
tions and errors in modeling.
The purpose of this paper is to assess the sensitivity

of 3D-QSAR models to different data treatments and
statistical analysis protocols. Sensitivity to statistical
analysis protocols arises because, in 3D-QSARmethods,
there is a very large number of quantitative descriptors
of molecular interactions from which only a small
number of informative descriptors, or variables, that
correlate with activity must be detected. Selection of
the most informative variables and elimination of
background noise is a general problem, common to any
3D-QSAR method like COMBINE or CoMFA. The PLS
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regression method is able to handle the large matrices
of variables used in 3D-QSAR, but when the signal-to-
noise ratio is too low, the PLS method can fail to unveil
the variables correlated with the activity.5

In most CoMFA studies, the structure of the receptor
is unknown, and therefore, there is no well-defined way
to assign grid spacing and grid box dimensions around
the molecules. As a consequence, a large number of
ligand-probe interactions must be considered, most of
which are irrelevant for explaining the activity. In fact,
it has been shown that keeping irrelevant variables in
the model can have detrimental effects on predictive
ability.6 Thus, a method that would successfully select
only those variables which have the most significant
effect on the biological activity would be of considerable
interest. In principle, there are two different strategies
that can be pursued in order to increase the signal-to-
noise ratio: one is manipulation of the relative scaling
or weighting of the interactions, and the other is
statistical selection of the relevant variables.
The scaling of variables increases the weight of

certain interactions that may therefore dominate the
regression model. If these interactions are important
for activity, this is a way to improve the signal. Several
scaling procedures have been suggested.6 A popular one
is “autoscaling”, i.e., rescaling all independent variables
to unit variance, thus giving each variable the same
opportunity to influence the PLS regression model.
Another method is “block-scaling”, in which the data
matrix is divided into consistent groups of variables (for
example, van der Waals and electrostatic) and each
block is given unit variance, with the constraint of
maintaining the relative weights of variables inside the
block. However, it can be argued that these matrix
modifications result in a balance of the interactions
which has no physical interpretation. An alternative,
physically based approach to weight interactions is to
apply a dielectric model to the electrostatic interactions.
A dielectric model chosen to properly reproduce the
dielectric properties of the receptor binding site can give
physically based interaction weights. Unfortunately,
there is not a consensus about the best way to reproduce
the dielectric properties of protein binding sites, al-
though several ad-hoc dielectric models have been
proposed (see below).
Several approaches to variable selection based on

statistical tools have been put forward. The GOLPE
method7 essentially works by evaluating the effects of
individual variables on the predictive ability of the
model. To calculate these effects efficiently, the GOLPE
method builds and cross-validates a set of PLS models
following a fractional factorial design (FFD) scheme. An
alternative approach is the cross-validated Q2-guided
region selection (Q2-GRS) method.8 In this method, the
grid box is divided into smaller cubic regions which are
used to build independent PLS models. The regions
producing better models are then “pasted” together to
create a “composite” region from which the final regres-
sion model is generated.
Data pretreatment and selection of the most informa-

tive variables are key steps in any 3D-QSAR study and
have therefore received increasing attention in the
field.7-12 However, the effects on model quality of
changing different parameters in the CoMFA methodol-
ogy are not necessarily independent, and to date, this
interdependency has not been studied systematically.

In this paper, different protocols for data scaling and
variable selection in CoMFA analysis are assessed by
developing regression models for all possible protocol
combinations. The quality of the models has been
carefully evaluated. A difficulty in model evaluation is
that a consensus is lacking on how to quantify the
quality of a model. In our opinion, the two main aspects
of the model which should be considered are (1) its
predictive ability, which can be assessed by internal and
external validation, and (2) its ability to mimic the key
ligand-receptor interactions in the receptor binding
site. We have assessed predictive ability both by
internal validation (cross-validation) and by external
validation for several prediction sets. We have quanti-
fied predictive ability with the SDEP andQ2 parameters
which are defined by:

where Y is experimental activity, Y′ is predicted activity,
〈Y〉 is the average experimental activity, and N is the
number of molecules. The pharmacophoric patterns
obtained in the different models were assessed by
comparison to the known crystal structure of a ligand-
receptor complex, previous structure-activity studies,
and “optimal” COMBINE regression models. The con-
tributions of different residues in the receptor to activity
cannot generally be deduced from graphical and geo-
metric analysis of a structure of the ligand-receptor
complex alone. Since COMBINE analysis assigns a
contribution to the biological activity to each residue in
the receptor, it is possible to use COMBINE models as
a reference by which to judge the pharmacophoric
mapping properties of the CoMFA models in a more
objective way. Intramolecular interactions, which are
not considered in a CoMFA model, can contribute to
COMBINEmodels.4 However, if they are excluded from
the COMBINE analysis, predictive models are still
obtained; Q2 is typically about 0.1 lower, but the models
have similar or greater predictive ability than the best
CoMFA models. The fact that COMBINE models
including only intermolecular terms give good predic-
tions indicates that reasonable receptor maps should be
achievable with CoMFA.
The data set used in this study is the same as used

before in the development of the COMBINE formalism.4
It consists of a series of 26 inhibitors (see Figure 1 and
Table 1) of the human synovial fluid phospholipase A2
(HSF-PLA2; Figure 2).13 The three-dimensional struc-
ture of the HSF-PLA2 has been solved by X-ray crystal-
lography both in its native form14,15 and in a complex
with the transition state analogue LM1220 (see Table
1).15 The PLA2 inhibitors used for the derivation of the
3D-QSAR are quite large, with two long hydrocarbon
tails present in all inhibitors (see Table 1). Most of them
are charged, and they do not all have the same net
charge. This means that in order to detect all important
electrostatic interactions, a rather large grid box must
be used for the CoMFA studies. On the other hand,
structural variations are confined to a few places in the
molecules, mainly in the transition state analogue group
and in the sn-3 position. Thus, many of the grid points

SDEP )xΣ
(Y - Y′)2

N
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in the box do not carry any significant information, and
therefore the PLA2 inhibitor set represents a challeng-
ing example for any variable selection method.

Methods
COMBINEAnalysis. 1. Outline of theMethod. Amore

detailed account of the COMBINE analysis method can be
found in ref 4. A summary of the procedure is given here for
completeness. The process can be considered as three sequen-
tial steps. In the first step, the total binding energy of each
ligand is calculated using a molecular mechanics force field.
The binding energy is given by the sum of the following terms,
expressed on a “residue” basis:

The first two terms on the right hand side of eq 3 describe
the intermolecular interaction energies between each residue

i of the ligand and each residue j of the receptor. The next
four terms describe changes in the bonded (bond, bond angle,
and torsion) and the nonbonded (Lennard-Jones and electro-
static) energies of the ligand upon binding to the receptor, and

Table 1. Chemical Formulae and Activities of the HSF-PLA2 Inhibitorsa

name XLM YLM ZLM SN1 SN2 SN3 SN4 SN5 RLM GLI
%

inhibition

lm1166 -CH2- -CONH- -OPO2O- -(CH2)3CH3 -C7H14 -CH2CH2OH -(CH2)3CH3 65 ( 14 (7)
lm1192 -CH2- -CONH- -OPO2O- -(CH2)3CH3 -C7H14 -CH2CH2O- -(CH2)3CH3 -CH2C6H5 6 ( 9 (3)
lm1216 -CH2- -CONH- -OPO2O- -(CH2)3CH3 -C7H14 -CH2CHNH3COO -(CH2)3CH3 31 ( 27 (3)
lm1220 -O- -PO2O- -OPO2O- -(CH2)4- -C6H12 -CH2CH2NH3 -CH3 -(CH2)3CH3 R 33 ( 3 (3)
lm1228 -CH2- -SO2NH- -OPO2O- -(CH2)3CH3 -C6H12 -CH2CH2O- -(CH2)3CH3 -CH2C6H5 R 78 ( 12 (6)
lm1230 -CH2- -SO2NH- -OPO2O- -(CH2)3CH3 -C6H12 -CH2CH2OH -(CH2)3CH3 49 ( 3 (3)
lm1240 -O- -PO2O- -OPO2O- -(CH2)4- -C6H12 -CH2CH2N(CH3)3 -CH3 -(CH2)3CH3 R 9 (1)
lm1245 -CH2- -CONH- -OPOOCH3CH2- -(CH2)3CH3 -C7H14 -CH2CH2CH3 -(CH2)3CH3 24 ( 36 (3)
lm1246 -CH2- -CONH- -OPO2CH2- -(CH2)3CH3 -C7H14 -CH2CH2CH3 -(CH2)3CH3 45 (1)
lm1258 -CH2- -SO2NH- -OCH2- -(CH2)3CH3 -C6H12 -CF3 -(CH2)3CH3 0 (1)
lm1261 -CH2- -CONH- -OPO2O- -(CH2)3CH3 -C7H14 -(CH2)3CH3 -(CH2)3CH3 80 ( 6 (3)
lm1265 -CH2- -SO2NH- -OPO2CH2- -(CH2)3CH3 -C6H12 -CH2CH2CH3 -(CH2)3CH3 30 ( 18 (3)
lm1277 -CH2- -SO2NH- -OPO2CH2- -(CH2)3CH3 -C6H12 -CH3 -(CH2)3CH3 33 ( 18 (3)
lm1283 -CH2- -SO2NH- -OPO2O- -(CH2)3CH3 -C6H12 -CH2CH2O- -(CH2)3CH3 R 45 ( 26 (3)
lm1284 -CH2- -SO2NH- -OPO2O- -(CH2)3CH3 -C6H12 -CH2CH2O- -(CH2)3CH3 -CH2C6H5 S 12 ( 10 (3)
lm1292 -CH2- -SO2NH- -OPO2O- -(CH2)3CH3 -C6H12 -CH2CH2OH -(CH2)3CH3 R 44 ( 18 (3)
lm1293 -CH2- -SO2NH- -OPO2O- -(CH2)3CH3 -C6H12 -CH2CH2OH -(CH2)3CH3 S 40 ( 19 (3)
lm1298 -CH2- -SO2NH- -OPO2O- -(CH2)3CH3 -C6H12 -CH2CH2NH3 -(CH2)3CH3 4 ( 20 (3)
lm1299 -CH2- -SO2NH- -OPO2O- -(CH2)3CH3 -C6H12 -(CH2)3CH3 -(CH2)3CH3 0 (3)
lm1300 -CH2- -SO2NH- -OPO2O- -C6H5 -C6H12 -CH2CH2O- -(CH2)3CH3 -CH2C6H5 24 ( 24 (3)
lm1304 -CH2- -SO2NH- -OSO2CH2- -(CH2)3CH3 -C6H12 -CH2CH2O- -(CH2)3CH3 -CH2C6H5 28 ( 5 (3)
lm1309 -CH2- -CONH- -OPO2O- -(CH2)3CH3 -C6H12 -CH2CH2NH3 -(CH2)3CH3 -CH2C6H5 28 ( 28 (3)
lm1313 -CH2- -SO2NH- -OPO2O- -(CH2)3CH3 -C6H12 -CH2CH2O- -(CH2)3CH3 36 ( 12 (3)
lm1338 -CH2- -SO2NH- -OPO2O- -(CH2)3CH3 -C6H12 -CH2CH2O- -(CH2)3CH3 -CH2C6H5 S 46 ( 15 (7)
lm1339 -CH2- -SO2CH2- -OPO2O- -(CH2)3CH3 -C6H12 -CH2CH2O- -(CH2)3CH3 -CH2C6H5 79 ( 1 (3)
lm1340 -CH2- -SO2CH2- -OPO2O- -(CH2)3CH3 -C6H12 -CH2CH2O- -(CH2)3CH3 29 ( 3 (3)

a See Figure 1 for a schematic diagram of the molecules’ structures. The GLI fragment corresponds to the glycerol backbone. Its
chirality is specified as follows: R indicates that both experiments and modeling were performed with the R structure; likewise for S. For
the remaining compounds, a racemic mixture was used in the experiments, but the R form was modeled as the most potent chirally
resolved compound had R stereochemistry. Enzyme activities were measured as described in ref 13b with enzyme isolated from human
synovial fluid and the natural substrate, phosphatidylethanolamine so that the experimental conditions were as relevant to human
proinflammatory situations as possible. Inhibitor activities (taken from ref 13) are expressed as percent enzyme inhibition (with standard
deviation) at 0.01 mol fraction of inhibitor in the substrate vesicles. The number of activity measurements for each compound is shown
in parentheses. XI(50) data available for 10 of these compounds (unpublished) show similar trends to the percent inhibition data with a
limited linear correlation (R ) 0.86). This provides support for the validity of correlating percent inhibition data and receptor binding
affinity.

Figure 1. Schematic diagram of the HSF-PLA2 inhibitors,
showing the fragments into which they were divided for the
analysis (see also Table 1). The glycerol backbone, correspond-
ing to fragment GLI, is not labeled for clarity.
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Figure 2. Schematic diagram of HSF-PLA2 complexed with
a representative inhibitor (lm1228). White spheres represent
atoms of protein residues lining the binding site that are
frequently selected to contribute to regression models in
COMBINE analysis (see ref 4 and Table 3 therein). The
calcium ion in the active site (shaded sphere) also makes an
important contribution to COMBINE models. Other residues
whose interactions are selected in COMBINE models are
mostly located further from the binding site or are only
selected occasionally when multiple models are generated. This
diagram was generated with the Molscript program.29
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the last four terms account for changes in the bonded and
nonbonded energies within the receptor upon ligand binding.
In the second step, a matrix is constructed whose columns

correspond to each of the energetic terms on the right-hand
side of eq 3 and whose rows represent the different compounds
studied. A final column containing the inhibitory activities
of the compounds is added to the matrix. In the third step,
the PLS method5 is applied along with a variable selection
procedure. Variables of little importance to activity are thus
excluded from the QSAR. The final equation for correlating
the binding free energy (and hence, inhibitory activity) with
a subset of the interactions in the ligand-receptor complex is

where ∆ui
rep are the changes on ligand binding in the energy

terms selected using the statistical analysis,wi are the weights
applied to these energy terms, and the constant C accounts
for some of the systematic contributions to the binding affinity
and statistical errors in the process of fitting eq 4.
2. Model Building and Statistical Analysis. Computer

models of all of the complexes between the inhibitors listed in
Table 1 and the HSF-PLA2 were generated using the 3D
structure of HSF-PLA2 cocrystallized with a transition state
analogue (LM1220, Table 1) solved at 2.1 Å resolution15 as
described in refs 4 and 16. To obtain conformations for the
free inhibitors, each compound was positioned in the nearest
local energy minimum conformation to the minimum found
in the complex. A detailed account of the modeling procedures
can be found in our previous work.4,16

The matrix for the statistical analysis was generated from
the energy terms in eq 3 calculated for each inhibitor and was
analyzed with the GOLPE 3.0 program.7b There were 26 rows,
one for each of the compounds studied. The original matrix
had 3310 columns of X-variables corresponding to the energy
terms described in eq 3 (constituting the “X-matrix”) and one
Y-variable column corresponding to experimental activity. The
X-matrix was then subjected to various pretreatment protocols
(see next section) before building PLS models. PLS models
were derived with variable selection performed using the
GOLPE method,7 as described previously.4 The final models
were tested by cross-validation using 5 random groups and
20 randomizations. This means that objects were assigned to
one of five different groups in a random way. Four of these
groups were used to build a PLS model, which was then used
to predict the activity of the objects of the remaining group.
The procedure was repeated five times, each time removing a
different group. The whole computation, including the random
assignment of the objects to the groups, was repeated 20 times.
CoMFA Studies. A number of CoMFA3 studies using the

same data set were carried out. Inhibitors were aligned by
superimposing the CR atoms of the protein in all of the
modeled complexes, using the LM1220-HSF-PLA2 complex as
a template. The superimposed set of inhibitors is shown in
Figure 1 of the Supporting Information. Calculation of steric
and electrostatic fields around the aligned set of molecules was
performed with the GRID program, version 11,17 using methyl
and proton probes, respectively. The same set of partial atomic
charges was used as in the COMBINE analysis and was
derived by electrostatic potential fit from semiempirical MNDO
calculations. The van der Waals radii were, however, chosen
according to the GRID parameter set. A 2 Å grid spacing and
a box of 26× 28× 22 points were used. Details of the relevant
parameters in the matrix generation procedure can be found
in Table 1 of the Supporting Information. Three different
scaling procedures (variance scaling) were carried out prior
to the development of the regression models. Four different
dielectric schemes (dielectric scaling) were used to modify the
electrostatic interactions. Two different variable selection
methods were used. Thus, a total of 3 × 4 × 2 ) 24 regression
models were derived from the full data set. The scaling
procedures are as follows (each scaling and selection procedure
will be identified in the rest of the paper by the one-letter code
given):

1. Variance Scaling. A. No Scaling (N). The X-matrix,
with the energy values as calculated above, was used directly
as input to the GOLPE 3.0 program.7b No further modifica-
tions were performed in order to derive the regression model.
With this procedure, energy variables with higher variance
have greater initial weights in the PLS analysis.
B. Autoscaling (A). Each element xij of the X-matrix,

corresponding to an energy term, was autoscaled as follows:

where 〈xj〉 is the average value of the variable j in the X-matrix
and sj is the standard deviation. This procedure assigns all
variables unit variance and thus the same initial weight and
opportunity to influence the PLS results.
C. Block Scaling (B). The X-matrix is divided into k

blocks of related data. In this case, different blocks contain
data derived with different probes in the GRID calculations.
Each element xij,k of a block is scaled as follows:

where σX is the total standard deviation of the X-matrix and
σk is the standard deviation of the block under consideration.
Within each block, the variables are unscaled, and the larger
the variance of a descriptor is, the greater its importance in
the model. However, the total sum of squares is preserved,
and each block has the same importance.
2. Dielectric Scaling. A. Constant Dielectric Model

(C). A relative dielectric constant of ε ) 4 was assigned to
the medium surrounding the compounds studied as is common
when using the GRID energy function for CoMFA analysis.17
This value is often assigned to the dielectric constant in the
interior of a protein.18
B. Distance Dependent Dielectric Model (R). A dis-

tance dependent relative dielectric constant ε ) rij was also
tested. The rationale for using this dielectric model in force
field calculations is to implicitly mimic molecular polarization
at short separations and the screening effect of charges that
are not explicitly modeled at longer separations. This dielec-
tric model is standard in CoMFA calculations using the SYBYL
implementation.19
C. Warshel Dielectric Model (W). This dielectric model

was derived by Warshel20 using experimental information
about the free energy of electrostatic interactions between
charged groups in proteins. Because the aim of CoMFA is to
find a significant correlation between molecule-probe interac-
tions and a term related to the binding free energy, this
dielectric model may be appropriate for application to the
electrostatic field in CoMFA. It has the following dependence
on the distance r between the interacting charges:

D. Hingerty Dielectric Model (H). This dielectric model
has been proposed by Hingerty et al.21 It is based on a
modification of Debye's distance dependent dielectric function,
corrected to short distances using the method of image charges
for a charge in a cavity immersed in water. This dielectric
model has been found to be adequate for modeling electrostatic
base-stacking interactions in DNA as it provides energy values
that are comparable to those obtained using the finite differ-
ence Poisson-Boltzmann equation.22 The following analytical
expression is used in order to calculate the macroscopic relative
dielectric constant:

These models result in very different distance dependencies
for electrostatic interaction energies (see Figures 2 and 3 in
Supporting Information). The ε ) rij model tends to increase
the weight, with respect to the constant dielectric model, of
the strongest electrostatic interactions which occur when the
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probe is near the van der Waals surface of the molecules. The
Warshel model, on the other hand, strongly damps interactions
at all distances. The Hingerty model behaves in a similar way
to the constant dielectric model in the neighborhood of the
molecules but damps interactions strongly at greater distances,
thus tending to suppress long range correlations between the
molecular electrostatic interaction fields. The effect of the
different models on the standard deviation of the electrostatic
potential (σep) and its relationship to the steric potential is
shown in Figure 3. In this figure, the electrostatic potential

is contoured at 2σep. The dielectric model with ε ) 4 shows,
as expected, the highest standard deviation. Virtually all the
points in the grid box have values > 2σep. In the case of ε )
rij, a sphere of 10 Å radius around the inhibitor's phosphate
group encloses the 2σep limit. Both Warshel and Hingerty
models behave in a similar way, with strong damping such
that the 2σep contour essentially encloses the molecular shape.
The linear distance dependent model and the constant dielec-
tric model have similar block weights (see Table 2 of Support-
ing Information), with electrostatic terms tending to dominate

Figure 3. Contour plots of standard deviations in the interaction energy fields for the electrostatic energy with the different
dielectric models (top and middle rows) and the steric Lennard-Jones energy (bottom row). Contours are at 2σep and are shown
superimposed on the structure of HSF-PLA2 with inhibitor lm1228 modeled into the active site: (top left) ε ) 4, (top right) ε )
rij, (middle left) Warshel model, and (middle right) Hingerty model.
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the variance of the X-matrix with weights of about 1.5
compared to 0.8 for the steric terms. In contrast, in both the
Warshel and Hingerty models, the electrostatic and steric
fields show essentially the same variance (with respective
weights of 0.9 and 1.1). Thus, the overall picture of the four
matrices is that the distance dependent model tends to focus
on similarities between deep minima in the electrostatic
potential; the Warshel and Hingerty models focus on those
regions near the surface of the molecules, although the
Warshel model damps the electrostatic potential in a more
homogeneous way, and in the constant dielectric model, the
electrostatic potential tends to dominate and long range
correlations in the electrostatic potential are important.
3. Variable Selection. A. GOLPE Method (G). This

is the variable selection procedure usually applied within the
GOLPE 3.0 program.7b It relies on the validation of a number
of reduced models on variable combinations selected according
to a FFD strategy.23 A minimum σ (standard deviation) cutoff
of 0.3 was initially applied to all matrices to remove nearly
constant variables (trial calculations indicated models were
essentially unaffected by reducing the cutoff further below this
value). When required by the excessive number of variables,
a D-optimal design preselection24 was first carried out in order
to filter out redundant variables and retain those variables
that tend to correlate with the biological activity while
providing the most independent information. For the selec-
tion, the partial weights space of a preliminary PLS model
was used, and then the D-optimal preselection was made
stepwise, by removing 10% of the variables at each step unless
this led to overfitting. Overfit was checked by monitoring
predictive performance in cross-validation and stopping vari-
able reduction if it had a deleterious effect on the Q2 value.
When this happened or the number of variables dropped below
1500, a FFD variable selection was performed. In these
designs, dummy variables were introduced with the ratio of
true variables to dummies set to 3:1 and a design combinations
to variables ratio of 2:1. The predictive ability of the generated
matrices was evaluated by cross-validation, using 5 random
groups and 20 randomizations and allowing up to five latent
variables. Weights were recalculated after object exclusion.
Variables which were determined to be noise were excluded,
and variables which were found to be uncertain were retained,
using the iterative “fixing and exclusion” method.7 This
procedure was typically repeated two or three times, and in a
final step, uncertain variables were eliminated. The final
model was tested by cross-validation using 5 random groups
and 20 randomizations.
B. Q2-Guided Region Selection (T).8 In this method,

the initial box was divided into 125 small boxes, and for each
box, a PLS analysis was carried out. Only those boxes with a
Q2 value higher than a predefined cutoff were used in the
derivation of the final PLS model. The model dimensionality
within each of the boxes was determined according to cross-
validated predictive ability. The region selection was carried
out as implemented in the GOLPE 3.0 program.7b This
implementation includes some slight modifications with re-
spect to the original procedure described in ref 8: for each of
the small boxes, a step size of 2 instead of 1 Å was used.
Moreover, cross-validation within each of the boxes and in the
derivation of the final PLS model was carried out using 5
random groups and 20 randomizations rather than leave-one-
out cross-validation. Trial calculations indicated that a Q2

cutoff of 0.2 produced optimal results. In this approach, the
number of latent variables chosen for the final model was that
yielding the best cross-validated predictive ability.
CoMFA models were first generated for the full 26 com-

pound data set and evaluated by internal cross-validation (as
described in the previous two paragraphs). They were then
generated for training sets with a reduced number of com-
pounds in order to assess predictive ability on external test
sets. Three different test sets were used, and these are
described in the next section.

Results and Discussion

Effect of Different Parameters on the Predictive
Ability of CoMFA Models. 1. Effect of the Vari-

able Selection Procedure on the Predictive Abil-
ity. The predictive ability of the regression models
obtained by performing a PLS analysis without variable
selection on the matrices obtained with different dielec-
tric models and variable scaling procedures is detailed
in Table 3 of the Supporting Information. There is no
significant predictive ability in any of these matrices
as Q2 < 0.12 and SDEP > 20.6% in all cases. As will
be shown, this is due to the very low signal-to-noise ratio
in these large matrices.
The predictive ability of the regression models gener-

ated after applying variable selection to the different
matrices is given in Table 2. The highest Q2 value
(0.754) is obtained with the N-G-C and B-G-C matrices.
In general, variable selection with the GOLPE method
produces a model with a high Q2 value (about 0.7). On
the other hand, when variable selection is carried out
with the Q2-GRS method, results are highly dependent
on matrix pretreatment and dielectric modeling. Only
in three cases does the Q2-GRS method produce a
predictive model with a Q2 value above 0.5: with the
N-T-C, N-T-R, and N-T-W matrices. For equivalent
matrices, the Q2 value obtained with the Q2-GRS
variable selection procedure is lower than that obtained
with the GOLPE method.
2. Effect of the Energy Cutoff on the Predictive

Ability. In order to consider the impact of the maxi-
mum energy cutoff on the results, two additional models
were derived using an energy cutoff of 5 kcal/mol in the
GRID computations. Only Q2-GRS variable selection
was carried out, with a constant dielectric screening
factor of 4.0 for the electrostatic interactions. No-scaling
and block-scaling pretreatments were tested. In con-
trast to the models given in Table 2 for a 30 kcal/mol
cutoff, none of the resulting models had significant

Table 2. Predictive Performance for the Different X-Matrices
with Different Variable Selection Proceduresa

methodb LVc SDEC (%) R2 SDEP (%) Q2 Xsel
d

N-G-C 3 5.44 0.94 10.93 0.754 72
A-G-C 1 11.49 0.72 13.30 0.636 56
B-G-C 3 6.22 0.92 10.92 0.754 41
N-T-C 4 7.37 0.88 13.53 0.623 152
A-T-C 2 15.09 0.53 21.47 0.052 499
B-T-C 3 9.23 0.82 17.03 0.404 217
N-G-R 3 8.12 0.86 12.43 0.682 91
A-G-R 2 9.48 0.81 13.74 0.611 130
B-G-R 3 6.68 0.90 11.24 0.740 151
N-T-R 4 7.53 0.88 13.82 0.607 222
A-T-R 3 12.40 0.68 19.17 0.244 118
B-T-R 3 9.96 0.79 16.36 0.449 174
N-G-W 2 7.94 0.87 11.61 0.722 51
A-G-W 1 11.27 0.73 20.53 0.133 134
B-G-W 2 8.02 0.86 11.49 0.728 64
N-T-W 4 7.62 0.88 14.82 0.548 232
A-T-W 3 12.27 0.69 18.32 0.310 156
B-T-W 3 10.86 0.75 18.82 0.272 425
N-G-H 2 7.78 0.87 11.47 0.729 55
A-G-H 2 8.69 0.84 11.57 0.724 95
B-G-H 2 7.97 0.86 11.83 0.712 84
N-T-H 3 12.33 0.68 18.81 0.273 274
A-T-H 3 12.47 0.68 18.80 0.273 118
B-T-H 3 12.46 0.68 18.91 0.265 274
a A minimum standard deviation σ cutoff of 0.05 was used to

filter out variables of very low variance before statistical analysis.
b Variable scaling procedure: N, no scaling; A, autoscaling; B,
block-scaling. Variable selection method: T, Q2-GRS; G, GOLPE.
Dielectric model: C, constant (ε ) 4); R, distance dependent; W,
Warshel model; H, Hingerty model. c Number of latent variables.
d Number of selected X-variables in the model.
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predictive ability, and the maximum Q2 value was 0.26
(see Table 4 of the Supporting Information).
3. Effect of the Grid Spacing on the Predictive

Ability. The original Q2-GRS method8 differs from our
implementation in one important aspect: while Cho and
Tropsha used two different grid spacings (2 Å for the
general regression model and 1 Å for each of the small
boxes), we used a 2 Å grid spacing for all stages of the
calculation. In order to check the impact of this differ-
ence on predictive performance, a comparison of both
implementations was performed using the N-T-C ma-
trix. Q2 values better by about 0.2 are obtained for this
matrix when a 2 Å grid spacing is used for the whole
procedure (see Table 5 of Supporting Information). This
is probably the result of an increased signal-to-noise
ratio for the 2 Å spacing grids. In both cases, however,
similar boxes are selected for the final model.
4. Effect of Dielectric and Variance Scaling on

the Predictive Ability. For both the GOLPE and Q2-
GRS variable selection methods, the model with the
highest predictive ability is found with the unscaled
matrices using a relative dielectric constant of ε) 4 (see
Table 2). With the Q2-GRS variable selection method,
the ranking of predictivities for the different dielectric
models is C > R > W > H. This is inversely correlated
with the strength of electrostatic damping at distances
above 6 Å, which underscores the long range character
of electrostatic interactions and suggests that long range
correlations of the electrostatic potential are important
in structure-activity relationships. Indeed, only the ε
) 4 and ε ) rij dielectric models produce regressions
with good predictive ability when the Q2-GRS method
is used.
Autoscaling has an undesirable effect on predictive

ability in almost all cases. This is consistent with the
results of Cruciani and Watson8 who analyzed a set of
inhibitors of glycogen phosphorylase with the GOLPE
variable selection method. Autoscaling overweights
variables that have a small influence on predictive
ability and do not reflect real structural variations. On
the other hand, block-scaling generally improves the
predictive ability only slightly when used with the
GOLPE method but has a negative effect when used
with the Q2-GRS method. The fields selected for the
best models (i.e., for the N-T-C and N-G-C matrices) are
displayed in Figure 4.
5. Analysis with External Validation. So far, we

have quantified the predictive quality of the model on
the basis of internal validation (cross-validation) only.
Even when the internal cross-validation method utilized
(random groups cross-validation) is very conservative,
it can fail to detect overfitting in the models and thus
give overoptimistic indicators of predictive performance.
In order to compare the two methods of variable
selection, it is of critical importance to confirm that the
SDEP and Q2 parameters derived from internal valida-
tion actually reflect the real predictive ability of the
models and are not influenced by overfitting. We have
done this by external validation.
To perform external validation, the initial data set of

26 inhibitors was divided into two groups: a training
set of 20 inhibitors and a test set of 6 inhibitors. The
molecules in this test set (test set 1) were selected so
that they cover the different functional groups present
in the inhibitor set and a wide range of activities. The
six molecules in test set 1 were lm1293, lm1298, lm1300,

lm1309, lm1338, and lm1339. New regression models
were derived. This was only done for unscaled matrices
as the internal validation results showed that they
resulted in models with better predictive ability for both
variable selection methods than autoscaled or block-
scaled matrices. The same four dielectric models were
used, and both methods of variable selection were
applied, resulting in the 4 × 2 ) 8 regression models
whose predictive ability is summarized in Tables 3 and
4.
As there is a smaller number of inhibitors in the

training set, the Q2 values for internal cross-validation
are expected to be smaller than before (see Table 3).
With Q2-GRS variable selection, internal validation
indicates significant predictive ability only for the N-T-C
matrix. On the other hand, all the models obtained
after GOLPE variable selection have greater predictive
ability, and the correlation can be considered significant
in at least three cases. It is also remarkable that the
Q2-GRS method suggests models of different complexity
(between one and five latent variables), while the
GOLPE method suggests models with two latent vari-
ables in all cases except those with the poorest predic-
tive ability.
The external validation results are summarized in

Table 4. It appears that, while the internal SDEP
always improves (decreases) with variable selection, the
same is not always true for the external SDEP. More-
over, there is better agreement between the internal and
external SDEP values after variable selection for the
models obtained with theQ2-GRSmethod than for those
obtained with the GOLPE method.
With both variable selection methods, the best exter-

nal predictions are obtained when a relative dielectric
constant of 4 is used. Figure 5 shows a comparison of
the experimental activities of the test set inhibitors with
their activities predicted using the N-T-C and N-G-C
methodologies. The model obtained after GOLPE vari-
able selection seems to result in a tendency toward
predicting the average of the observed activity values.
The predictions of the less active compounds are too
high, while those of the more active compounds are too
low. Predictions carried out with a model derived using
COMBINE analysis with the GOLPE variable selection
method show a similar tendency, suggesting that the
variable selection method is probably at the origin of
this problem. On the other hand, the effect of the
dielectric treatment shows a similar tendency for both
internal and external validation to that found for the
models derived from the full data set. The only notice-
able difference is the poor performance of the ε ) rij
dielectric model compared to its performance with the
complete data-set. While the ε ) 4 model appears

Table 3. Predictive Performance of Models Derived for
Different X-Matrices Using the Reduced Training Set of 20
Inhibitors Described in Methods (Test set 1)a

method LV SDEC (%) R2 SDEP (%) Q2 Xsel

N-G-C 2 10.02 0.78 14.42 0.557 51
N-T-C 3 8.26 0.85 15.23 0.506 108
N-G-R 1 11.04 0.74 18.12 0.301 104
N-T-R 1 15.27 0.50 19.88 0.159 310
N-G-W 2 8.79 0.83 12.70 0.656 88
N-T-W 2 13.56 0.60 20.49 0.106 155
N-G-H 2 9.84 0.79 13.97 0.584 68
N-T-H 5 8.67 0.83 18.63 0.261 177
a Key as for Table 2.
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robust with respect to changes in the training set, the
ε ) rij model appears unstable.
These results are based on only one test set. To check

for data set dependency in the conclusions, we carried
out calculations for two additional test sets (test sets 2
and 3). These two test sets each contain four molecules
which were selected using a principal component analy-
sis (PCA) of the original X-matrix, to fulfill two crite-
ria: (1) they should represent the main clusters of
objects present in the score plot, and (2) they should
have neighboring objects, which can maintain the
structure of the data when they are removed from the
training set. An improved pretreatment of the X-matrix

was also carried out: X-variables that were clustered
around two, three, or four values, i.e., that had a clearly
discontinuous rather than continuous distribution of
values, were removed from the analysis, and the mini-
mum σ cutoff was fixed at a more conservative value of
0.01. In addition, uncertain variables were not removed
during variable selection. The results are presented in
Table 5.
In general, the new pretreatment and the inclusion

of uncertain variables in the final regression model
produces slightly better results, but the same trends are
observed for the three test sets. The Q2-GRS variable
selection method gives external SDEP values which are

Figure 4. PLS coefficient values at the optimal dimensionality (see Table 2) for the different regression models. Coefficient
values are represented by the size and color (yellow, positive; blue, negative) of the spheres superimposed on the structure of
HSF-PLA2 with inhibitor lm1228 modeled into the active site: (a) N-G-C, steric; (b) N-G-C, electrostatic; (c) N-T-C, steric; and (d)
N-T-C, electrostatic. The CR trace of the protein is shown together with the active site calcium ion (represented by a cross) and
all non-hydrogen atoms of residues mentioned in the Results and Discussion section.
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in better agreement with the internal ones in the three
test sets than the GOLPE method. In some cases, it
even gives external SDEP values that are smaller than
the corresponding internal SDEPs. In contrast, the
external SDEP values from GOLPE variable selection
models are always higher than the internal ones.
The external SDEP values for the better models are

also largely of the same magnitude as the experimental
standard deviations (on average ∼15%) for the percent
inhibition data. This indicates that models as good as
can be expected for this data set have been obtained
and, also, that these models are not overfitted. It also
suggests that models based on more accurate experi-
mental data, e.g., Xi(50) potencies rather than activities,
may result in much better SDEP values. Unfortunately,
due to the difficult experimental assay conditions, there
were insufficient Xi(50) values measured for this data
set for their use in model derivation and testing (see
legend to Table 1). Nevertheless, the more approximate
percent inhibition data are probably more representa-
tive of the data typically available for QSAR derivation

in the pharmaceutical industry. This implies that our
results may be of greater significance and practical
value than those that would be obtained with more
accurate experimental data.
It is worth noting, however, that the Q2-GRS method

for the block-scaled model with test set 2 produces a
very low external SDEP of 5.92 (predicted and experi-
mental values are nearly in perfect agreement for all
molecules in the test set). As also apparent from the
performance of the other models described in this work,
the Q2-GRS method is quite unstable with respect to
the robustness of internal predictive power to input
parameters and produces quite different models for
different data sets. Depending on the data set, the final
model is based on between 60 and 140 X-variables from

Table 4. Predictive Performance for Models Derived with a
Reduced Training Set (as in Table 3) Using Different X-Matrix
Pretreatments and Variable Selection Proceduresa

method LV SDEPe(i) SDEPe(vs) SDEPi(i) SDEPi(vs)

N-G-C 1 17.31 19.44 22.96 15.92
2 16.55 17.51 23.91 14.42
3 16.31 16.69 25.47 15.38
4 16.51 19.07 25.17 17.30
5 16.17 20.30 25.20 17.70

N-T-C 1 17.31 15.85 22.96 20.90
2 16.55 14.41 23.91 17.18
3 16.31 14.68 25.47 15.23
4 16.51 14.77 25.17 15.48
5 16.17 15.05 25.20 15.95

N-G-R 1 18.64 20.79 21.37 18.12
2 21.38 19.66 22.94 18.34
3 23.08 20.54 23.52 19.10
4 21.69 20.42 23.46 19.57
5 23.26 22.39 23.46 19.49

N-T-R 1 18.64 21.46 21.37 20.13
2 21.38 22.68 22.94 20.26
3 23.08 24.14 23.52 20.74
4 21.69 25.08 23.46 19.06
5 23.26 25.01 23.46 18.63

N-G-W 1 23.74 21.81 23.72 14.85
2 23.75 20.33 23.72 12.70
3 24.57 19.91 24.54 12.78
4 24.28 21.21 24.26 14.09
5 24.01 20.62 24.02 14.83

N-T-W 1 23.74 21.15 23.72 23.35
2 23.75 18.66 23.72 20.49
3 24.57 16.27 24.54 21.06
4 24.28 16.51 24.26 22.84
5 24.01 16.92 24.02 27.30

N-G-H 1 22.12 23.09 22.67 16.28
2 20.65 21.41 23.22 13.97
3 21.37 23.02 24.08 14.05
4 21.96 25.62 23.56 14.08
5 22.25 26.97 23.66 13.95

N-T-H 1 22.12 23.65 22.67 19.88
2 20.65 24.63 23.22 21.12
3 21.37 24.45 24.08 23.38
4 21.96 23.88 23.56 24.69
5 22.25 24.44 23.66 25.32

a SDEP values are given for external test set 1 (six molecules)
and from internal cross-validation calculations. Key as in Table
2. SDEP values are percentages as follows: SDEPe(i), external
SDEP values obtained using the test set before variable selection;
SDEPe(vs), external SDEP values obtained using the test set after
variable selection; SDEPi(i), internal SDEP values obtained using
the training set before variable selection; SDEPi(vs): Internal SDEP
values obtained using the training set after variable selection.

Figure 5. Predicted and experimental activities for the six
molecules in external test set 1: ([) lm1293, (9) lm1298, (2)
lm1300, (×) lm1309, (*) lm1338, and (b) lm1339. For the
predictions, the optimal model dimensionality as determined
by internal cross-validation was used (see Tables 4 and 5).

Table 5. Predictive Performance of Models Trained and Tested
with Different Data Setsa

method
test
setb LV R2 Q2 SDEPi(vs) SDEPe(vs) Xsel

N-G - 3 0.86 0.60 13.85 - 822
1 2 0.79 0.53 14.66 18.47 651
2 3 0.81 0.52 14.34 18.97 838
3 3 0.79 0.43 13.22 23.98 828

N-T - 4 0.88 0.62 13.58 - 107
1 3 0.82 0.47 15.48 13.73 105
2 2 0.60 0.28 17.51 17.02 68
3 5 0.75 0.30 14.59 19.35 63

B-G - 3 0.87 0.65 13.12 - 834
1 3 0.85 0.55 14.31 19.75 922
2 3 0.82 0.46 15.20 17.55 824
3 3 0.80 0.48 12.54 21.76 828

B-T - 4 0.88 0.60 13.85 - 112
1 2 0.79 0.48 15.42 14.62 132
2 3 0.81 0.33 16.90 5.92 134
3 3 0.68 0.19 15.68 21.44 94

a Models were derived by applying a minimum σ cutoff of 0.01
to generate the X-matrix and eliminating variables with values
clustered in two, three, or four groups rather than adopting a
continuous distribution. A constant dielectric of ε ) 4 was used.
Key is as for Tables 2 and 4. b Test set definition: -, no test set
(i.e., regression model using the full data set); 1, molecules lm1293,
lm1298, lm1300, lm1309, lm1338, and lm1339 (test set 1 is the
same as the test set for Table 3); 2, molecules lm1298, lm1166,
lm1228, and lm1220; 3, molecules lm1258, lm1261, lm1339, and
lm1240.
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one to three selected sub-boxes and has between two
and five latent variables. In contrast, the models
derived with the GOLPEmethod have a similar number
of selected X-variables (650-920) and latent variables
in all the test sets and are thus more stable.
6. Effect of Retaining Uncertain Variables in

GOLPE Variable Selection. As stated above, the
GOLPE method evaluates the effect of individual vari-
ables on the predictive ability of the models. However,
some variables might have no clear effect on the
predictive ability. These uncertain variables can be
either kept in the model or removed. In the original
description of the GOLPE method, 7 it was suggested
that uncertain variables should be eliminated, but the
authors’ experience has shown that, in the field of 3D-
QSAR, it is better to retain uncertain variables in order
to minimize the risk of overfitting. We have tested the
impact of elimination of uncertain variables during the
selection process, and the results are shown in Table 6.
The external SDEP is greater after elimination of
uncertain variables for the two external test sets even
though the internal SDEP is slightly smaller. Thus,
elimination of uncertain variables clearly has a negative
effect on predictive ability and increases the risk of
overfitting.
It is instructive to consider the evolution of the

internal and external SDEP parameters as a function
of the number of selected variables. The SDEPi value
drops throughout the variable selection procedure (see
Figure 4 of Supporting Information). However the
SDEPe value only decreases by a small amount until
elimination of uncertain variables is carried out. It then
increases considerably, indicating that overfitting oc-
curs.
7. Chemometric Analysis of the Models. In

previous sections, the effect of some of the CoMFA
parameters on internal and external indices of predic-
tive ability has been described. However, prior to
interpreting these findings to draw conclusions, the PLS
models obtained should be analyzed from a chemometric
point of view. For this analysis, we have used two
CoMFA models, one obtained with GOLPE variable
selection and the other obtained with Q2-GRS variable
selection (the N-G-C and N-T-C models described in
Table 5, respectively).
Figure 6 shows the partial weights plot for these two

models. In the N-T-C model, a few X-variables show a

surprisingly high correlation with the activity, while all
the rest seem to correlate very little with activity.
Variable 1577 shows the best correlation with activity
(see Figure 5 of Supporting Information). While there
is little correlation between the value of variable 1577
and the activity for compounds of intermediate activity,
most of the less active molecules (lm1298, 4% inhibition;
lm1192, 6% inhibition; and lm1240, 9% inhibition) have
low interaction energies for variable 1577, and the
molecules with the highest activity (lm1261, 80% inhibi-
tion; lm1339, 79% inhibition; and lm1228, 74% inhibi-
tion) have the maximum positive energy for variable
1577, corresponding to the maximum positive energy
cutoff at 30 kcal/mol. Variable 1577 is a van der Waals
interaction and is positioned at the grid point within
the largest yellow sphere in Figure 4a,c. This grid point
is within the van der Waals volume of some of the
compounds in the series, and therefore the interaction
energy between the methyl probe and these compounds
has a large positive value which is truncated to the
positive energy cutoff value (5 or 30 kcal/mol). The
unusual behavior and high influence on the model of
variable 1577 are due to the fact that so many of the
molecules take the value of the maximum positive
cutoff.
Obviously, variables like 1577 and 5231, which show

a good correlation with the activity, will be included in
the model by both methods of variable selection, but in
the case of the Q2-GRS models, these variables take on
a more important role, as is evident from the partial
weights plots (Figure 6). This difference arises from the
differences in the methods of variable selection: the Q2-

Table 6. Effect of Elimination of Uncertain Variables in FFD
Selectiona

method setb LV R2 Q2 SDEPi(vs) SDEPe(vs) Xsel

No Elimination of Uncertain Variables
N-G - 3 0.86 0.61 13.85 - 822

2 3 0.81 0.52 14.34 18.97 838
3 3 0.79 0.43 13.22 23.98 828

B-G - 3 0.87 0.64 13.12 - 822
2 3 0.82 0.46 15.20 17.55 838
3 3 0.80 0.48 12.54 21.76 828

Elimination of Uncertain Variables
N-G - 4 0.89 0.56 14.64 - 43

2 2 0.79 0.55 13.87 20.90 42
3 3 0.84 0.59 11.14 26.32 33

B-G - 5 0.92 0.61 13.73 - 39
2 3 0.84 0.46 15.17 24.64 31
3 2 0.76 0.46 12.84 22.96 41

a Parameters and key as in Table 5. b Test set definition: -,
no test set (i.e., regression model using the full data set); 2,
molecules lm1298, lm1166, lm1228, and lm1220; 3, molecules
lm1258, lm1261, lm1339, and lm1240.

Figure 6. Partial weights plots for the X-variables and the
activity in the first two latent variables (LV1 versus LV2) for
the N-T-C and N-G-C models listed in Table 5 (see text for
details).
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GRS method selects a box of variables only when this
set of variables has a predictive ability better than a
given cutoff. Thus, the method will fail to include
variables in the final model which, even if important
for explaining the activity, cannot produce a good
correlation without the presence of variables from other
boxes. As a consequence, the Q2-GRS models contain a
smaller number of variables correlated with the activity
than the GOLPE models. This effect appears clearly
in the loading and partial weights plots, but it is not so
easily recognized by only looking at the number of
selected variables. It should also be remembered that
many of the variables are included in the final model
only because they belong to the same box as some
important ones. On the other hand, the GOLPEmodels
are much less dependent on the few highly correlated
variables because they contain many other variables
which also show significant correlations with activity.
The fact that the Q2-GRS models rely heavily on

variable 1577 helps to explain the findings described
in previous sections:
1. Reduction of the maximum positive energy cutoff

from 30 to 5 kcal/mol will decrease the predictive ability
of Q2-GRS models (Table 6) because this transformation
will greatly reduce the correlation between activity and
variable 1577. In addition, this change will decrease
the weight of such variables and their influence in the
PLS models.
2. Changes in X-variable scaling (with both statistical

and dielectric schemes) are more likely to perturb
regression models based on a small number of variables.
This partially explains the instability of the Q2-GRS
models (see Tables 4 and 6). In contrast, GOLPE
models are more stable with respect to the number of
variables selected and the dimensionality of the models.
3. The sensitivity of the external predictions can be

understood from the correlation between activity and
variable 1577. The external SDEP values of Q2-GRS
models depend directly upon how the test set is selected.
Test set 2 contains points that can be well described by
variable 1577, and therefore, the external SDEP is even
lower than the internal SDEP. On the other hand, test
set 3 contains compound lm1258, which is an outlier as
regards the correlation between variable 1577 and
activity (with a maximum value for variable 1577 and
a low activity). As a consequence, the external SDEP
value for test set 3 is higher than the internal SDEP
and higher than the SDEP obtained for test set 2.
This analysis raises the question of whether variable

1577 represents a “real” effect or whether the correla-
tions only appear by chance. On one hand, as will be
discussed later, this variable might represent the hy-
drophobic interaction of the sn-1 chain of the inhibitors
with Leu-2 of the protein. On the other hand, as there
are no other variables close to 1577 in latent variable
space, there is no chemometric support for the signifi-
cance of this variable, and the effect might be a chance
occurrence.
Comparison of COMBINE and CoMFA Models.

One of the potential advantages of the CoMFA 3D-
QSAR approach over conventional QSAR is the putative
ability of CoMFA to provide results that can be inter-
preted in terms of the interaction energies involved in
the binding process. As a consequence, it is important
not only that a CoMFA model has the ability to forecast
the biological activity of new molecules but also that the

resulting coefficient contour plots reflect the actual
nature of the ligand-receptor interaction. Several
authors have compared the fields selected using the
CoMFA approach with crystallographically determined
ligand-receptor geometries, evaluating the “match”
between the selected fields and the position of residues
in the ligand binding site graphically.9,10,25 However,
all of these comparisons suffer from the fact that the
magnitude of the contributions of the active site residues
to the differences in binding affinity are generally
unknown. Thus, the simple superimposition of fields
and residues in some region of space is not sufficient to
evaluate the receptor-mapping properties of CoMFA. On
the other hand, comparison of the energy terms selected
using the COMBINE analysis with the selected CoMFA
fields can be used to partially overcome this difficulty.
COMBINE models were found4 to be robust to chance
correlation by three methods: external blind cross-
validation, substitution of the activity vector by random
numbers, and random permutation of the activities
among the compounds. They thus provide a reliable
basis for evaluation of the CoMFA results. Here, it is
shown that the models derived with the two methods
share common features.
Figure 2 shows the “typical” intermolecular interac-

tions selected and quantified in a COMBINE analysis
of HSF-PLA2 inhibitors (see ref 4). Qualitatively, the
important interactions for activity are as follows. Bind-
ing affinity is dominated by electrostatic interactions
with the calcium ion located in the active site. Several
van der Waals interactions then modulate the affinity
of the inhibitors. Some of the residues in the B-helix
(top left of Figure 2) and the calcium binding loop form
a rigid wall sensitive to the conformation of the sn-2
chain. As a result of the sp2 geometry of the transition-
state analogue group, amide-based inhibitors tend to
display poorer interactions with this wall compared to
sulfonamide-based inhibitors with sp3 geometry, and
this explains part of the differences in activity. On the
other side of the binding site, Phe-5 and Tyr-52 form a
pocket in which the glycerol moiety of the inhibitor fits
and an optimal fit into this pocket increases activity.4
Finally, Pro-131 forms van der Waals interactions with
the benzyl moiety at the end of the sn-3 chain of some
of the inhibitors, which tend to increase the activity.
Indirect validation of these structure-activity rela-

tionships (SARs) comes from independent studies on
HSF-PLA2 inhibitors. Schevitz et al.26 arrive at similar
SARs for a completely different set of compounds which
are indole-based inhibitors. According to their results,
chelating the calcium ion produces a large increase in
the ligand affinity. Moreover, they observe strong steric
constraints in those portions of the inhibitors interacting
with the cleft formed by the B-helix and the calcium
binding loop of the enzyme. Wheeler et al.,27 who
studied the substrate specificity of short chain phos-
pholipid analogues to HSF-PLA2, also arrived at similar
SARs to those obtained with COMBINE analysis.
Comparison of the selected regions in the most

predictive CoMFA models, namely, N-T-C and N-G-C,
with each other and with the COMBINE model indi-
cates a rough correspondence of the important regions
and that similar interpretations of binding differences
are obtained (compare Figures 2 and 4). In both CoMFA
models, a zone of electrostatic field points that increase
the activity (blue spheres in Figure 4b,d) is selected near
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the position of the calcium ion. This region is less
evident in the N-T-C model, in which this interaction
tends to spread out over grid points in the same sub-
box. This dispersion appears to be a general charac-
teristic of Q2-GRS-derived models, which tends to make
the “pharmacophoric regions” less interpretable and
results in poorer correspondence with the interaction
points in the receptor. The “forbidden” region corre-
sponding to the position of the B-helix of the receptor
is selected in the steric fields of both CoMFA models
(blue spheres in Figure 4a,c). However, the glycerol
binding pocket is lost in the N-T-C model, although it
is clearly observable (yellow spheres) in the N-G-C
model. This effect could be an artifact of the box
division methodology in the Q2-GRS method. There is
no clear correspondence between the models in the
region around the benzyl portion of the inhibitors.
While COMBINE analysis selects Pro-131, N-G-C mod-
els select a set of grid points forming an electrostatic
ring around the benzyl ring. In some CoMFA studies,
this has been interpreted as evidence of π-π interac-
tions with the receptor.25 However, this interpretation
is inconsistent with the ligand-receptor complexes in
this case. Also, in the N-T-C model, the regions around
the benzyl ring of the inhibitor are located outside the
receptor structure and lack a clear physical meaning.
There are also selected regions that are difficult to
explain in structural terms. Thus, in the N-G-C model,
a steric field is selected at the position of Gly-32 in the
enzyme (leftmost yellow sphere in Figure 4a). The
regression models indicate that filling this region with
ligand atoms should improve activity. However, this
is hard to rationalize in the light of the complexes, as a
serious steric clash between the ligand and the receptor
would take place in this region. One possible explana-
tion for such physically unreasonable steric field regions
is the difficulty of making predictions from CoMFA
models for compounds with substituents that occupy
space not sampled by the training set. Indeed, it can
be expected that a positive steric region in a CoMFA
field, where addition of steric bulk is beneficial to
activity, is likely to be associated with a negative steric
region a little further away, since the reason that adding
some steric bulk is favorable is that it is positioned close
to receptor atoms. On the other hand, both CoMFA
models select a favorable steric interaction with Leu-2
(largest yellow contour in Figure 4a,c), although a
directly corresponding interaction is lacking in COM-
BINEmodels, despite several intrareceptor terms being
selected in the A-helix.4 It was shown in the previous
section that this interaction could originate from an
artifact due to the energy cutoff used in the calculation
of the X-matrix in the CoMFA studies. However, the
interaction with Leu-2 has a clear physical meaning in
structural terms, as a result of the hydrophobic interac-
tions between Leu-2 and the sn-1 chain of the inhibitor.
It is interesting that the interaction with residue 2 in
PLA2 enzymes has been advocated as a factor influenc-
ing selectivity for indole-based inhibitors.28

Conclusions

While the present study shows that predictive 3D-
QSARs can be obtained for a particularly challenging
data set (noisy but typical of many data sets studied in
medicinal chemistry projects), it highlights some of the
difficulties that may arise in achieving sound, reliable

3D-QSAR regression models. In summary, the main
findings are as follows:
1. Parameters such as dielectric constant, maximum

energy cutoff, grid-spacing, and variable scaling proce-
dure have a strong influence on CoMFA results. In the
present case, in which the GRID energy function17 was
used, a uniform dielectric with a relative dielectric
constant of 4 seems to be the best suited dielectric model
of those tested. This value of the dielectric constant is
often assigned to the protein interior18 in continuum
electrostatics calculations, and its use here implies that
long range correlations of the electrostatic potential
make an important contribution to structure-activity
correlations. A grid-spacing of 2 Å shows better per-
formance than a 1 Å spacing, probably as a result of an
increased signal-to-noise ratio.5 Autoscaling has a
negative effect on predictive ability. Block-scaling
improves the predictive ability slightly when used
together with GOLPE variable selection but has a
negative effect when used with the Q2-GRS method.
2. Variable selection with either the Q2-GRS8 or

GOLPE7 variable selection method only slightly im-
proves the external predictive ability of the models.
However, provided that care is taken in order to avoid
overfitting, variable selection enables predictive models
to be detected and their quality assessed. More specif-
ically, internal and external validation indices like the
SDEP parameter (eq 2) tend to converge after variable
selection with greater convergence being observed for
the Q2-GRS method. Importantly, both methods of
variable selection tend to select variables in roughly the
same regions of space leading to similar physical
interpretations. Most of these regions appear plausible
in the context of the 3D structure of the receptor. The
regions selected are also reasonably consistent with
those selected in the COMBINE analysis and those
found in independent structure-activity studies by
other authors.
3. The Q2-GRS variable selection method is very

sensitive to scaling procedures and maximum energy
cutoff values, while the GOLPE method seems more
robust. GOLPEmodels are also easier to interpret than
Q2-GRS models. However, the GOLPE method is more
prone to producing overfitted models, a risk that is
higher if uncertain variables are eliminated.
4. Validation of CoMFA models is always difficult.

External validation provides a stringent test, but the
results must be analyzed carefully. Any index of
predictive ability should be interpreted in relation to
the underlying structure of the data to avoid misleading
conclusions. In particular, PLS models should be
examined with the aid of plots of variables in principal
component space.
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