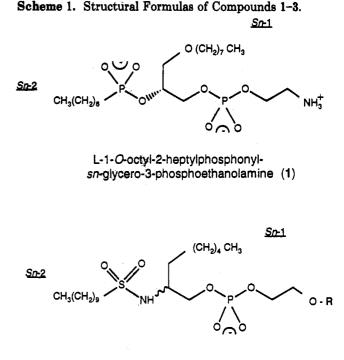
Rational Modification of Human Synovial Fluid Phospholipase A₂ Inhibitors[†]

M. Teresa Pisabarro,^{*,‡,§} Angel R. Ortiz,^{‡,§} Albert Palomer,^{*,||} Francesc Cabré,^{||} Luisa García,^{||} Rebecca C. Wade,[‡] Federico Gago,[§] David Mauleón,^{||} and Germano Carganico^{||}


European Molecular Biology Laboratory, Meyerhofstrasse 1, 69012 Heidelberg, Germany, Departamento de Fisiología y Farmacología, Universidad de Alcalá de Henares, 28871 Madrid, Spain, and R & D Department, Laboratorios Menarini S. A., Alfonso XII 587, 08912 Badalona, Spain

Received September 9, 1993

Mammalian nonpancreatic secretory phospholipase A2 (PLA₂) splits the 2-acyl bond in 1,2-diacylphosphatides.¹ This enzyme has been found in high concentrations in the synovial fluid of patients with rheumatoid arthritis,² and it has been suggested that inhibitors of this enzyme may have therapeutic value. The three-dimensional structure of human synovial fluid PLA2 (HSF-PLA2) is known both in its native form³ and in a complex with the transitionstate analogue (TSA) L-1-O-octyl-2-heptylphosphonyl-snglycero-3-phosphoethanolamine,⁴ 1. The present work is a part of our program to develop PLA₂ inhibitors and describes the successful rational modifications introduced into 1 aimed at enhancing its affinity toward HSF-PLA₂, based on the combined use of biochemical information, molecular graphics analysis,⁵ molecular orbital⁶ and molecular mechanics calculations,⁷ and the GRID⁸ and LUDI⁹ programs.

Hydrocarbon chain length is a critical factor for the activity of potential PLA₂ inhibitors. Studies with phospholipid analogues demonstrated that 10 carbons are required in the sn-2 acyl chain for optimum binding to cobra venom PLA₂,¹⁰ whereas the optimal length for the sn-1 alkyl chain is four carbons in the case of porcine pancreatic PLA₂.¹¹ These findings can be rationalized in terms of the observed number of contacts between the phospholipid analogs and the enzyme in known PLA₂-inhibitor complexes.¹² Analysis of the HSF-PLA₂ structure with the GRID program suggests similar structure-activity relationships¹³ (Figure 1).

The capacity of TSAs to bind with high affinity has been shown by Gelb et al. who introduced a phosphonate group into compound 1.¹⁴ In contrast, the substitution of acyl by sulfonyl, which is extensively used as a TSA of an ester group undergoing hydrolysis, has been reported by de Haas et al.¹⁵ not to improve inhibitory properties. Despite this discouraging data, we decided to introduce the sulfonamide group on the basis of the following rationale: Yu and Dennis^{16a} showed that the pK_a of the catalytically active His-48 is 6.1. Therefore, this residue is predominantly unprotonated under physiological conditions. Thus, in order for a TSA to function effectively at physiological pH, the bioisostere of the ester should be chosen so that, in addition to possessing tetrahedral features to resemble the transition state, it has a proton available to form a hydrogen bond to the N δ atom of His-

 $\begin{array}{l} \mathsf{R}=~-\mathsf{H}~(2)\\ \mathsf{R}=~-\mathsf{C}_{6}\mathsf{H}_{5}~(\mathbf{3},\,\mathsf{LM}\text{-}1228~) \end{array}$

48, as this hydrogen bond has been shown to provide 1.5 kcal/mol of binding energy.^{16a} Monosubstituted sulfonamides have a range of pK_a values that fulfills this requirement at physiological pH.^{16b} Moreover, the sulfonamide group may release some strain energy in the molecule. The C-O-P-C dihedral angle of the methylphosphonate moiety of 1 in the complex is 121.2°, giving rise to a strain energy of 0.6 to 0.9 kcal/mol¹⁷ (Figure 2). In contrast, the C-N-S-C dihedral angle of the N-methylmethanesulfonamide group has a global energy minimum at 120.0° 18 (Figure 2). These data indicate that sulfonamide-based inhibitors could be at least as effective as the phosphonate-based ones. Accordingly, 2-((decylsulfonyl)amino)-1-octylphosphoglycol 2,19 which fulfills the chain length features described above and has a sulfonamide group, is an effective inhibitor of HSF-PLA₂ activity with an $X_i(50) = 0.026^{20}$ in a mixed vesicle model. In this model, compound 1 inhibited the enzyme with an $X_i(50)$ value of 0.025. Therefore, sulfonamide-based TSAs are effective PLA₂ inhibitors. A molecular model accounting for the interaction of compound 2 with HSF-PLA₂ was built.²¹ In this model, carbons 8-10 of the sn-2 acyl chain fit in a hydrophobic pocket within the hydrophobic channel²² surrounded by residues Ala-18, Ala-19, Leu-2, Val-3, Phe-5, and His-6. There are no large conformational differences between this complex and the X-ray structure of HSF-PLA₂+1 (rms (C α) = 0.53 Å; rms (all non-hydrogen atoms) = 3.1 Å).

The result obtained with 2 encouraged us to design new modifications. Thus, the modeled complex of HSF-PLA₂ with 2 was used to search with the GRID program²³ for additional ligand binding sites in the enzyme that could be exploited by further modification of 2. Favorable aromatic interactions were found within what we have termed the "hydrophobic cage", a hydrophobic pocket delimited by residues Val-46, Thr-130, Pro-131, Gly-33 and the disulfide bridge linking Cys-50 and Cys-133 (Figure

^{*} Author to whom correspondence should be addressed.

[†]A preliminary report of this work has been presented at the XIIth Annual Conference of the Molecular Graphics Society, June 7, 1993, Interlaken (Abs. P70).

[‡] European Molecular Biology Laboratory.

¹ Universidad de Alcalá de Henares.

Laboratorios Menarini S.A.