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ABSTRACT: An ultrafast and accurate scoring function for protein−protein docking is presented. It includes (1) a molecular
mechanics (MM) part based on a 12−6 Lennard-Jones potential; (2) an electrostatic component based on an implicit solvent
model (ISM) with individual desolvation penalties for each partner in the protein−protein complex plus a hydrogen bonding
term; and (3) a surface area (SA) contribution to account for the loss of water contacts upon protein−protein complex
formation. The accuracy and performance of the scoring function, termed MM-ISMSA, have been assessed by (1) comparing the
total binding energies, the electrostatic term, and its components (charge−charge and individual desolvation energies), as well as
the per residue contributions, to results obtained with well-established methods such as APBSA or MM-PB(GB)SA for a set of
1242 decoy protein−protein complexes and (2) testing its ability to recognize the docking solution closest to the experimental
structure as that providing the most favorable total binding energy. For this purpose, a test set consisting of 15 protein−protein
complexes with known 3D structure mixed with 10 decoys for each complex was used. The correlation between the values
afforded by MM-ISMSA and those from the other methods is quite remarkable (r2 ∼ 0.9), and only 0.2−5.0 s (depending on the
number of residues) are spent on a single calculation including an all vs all pairwise energy decomposition. On the other hand,
MM-ISMSA correctly identifies the best docking solution as that closest to the experimental structure in 80% of the cases.
Finally, MM-ISMSA can process molecular dynamics trajectories and reports the results as averaged values with their standard
deviations. MM-ISMSA has been implemented as a plugin to the widely used molecular graphics program PyMOL, although it
can also be executed in command-line mode. MM-ISMSA is distributed free of charge to nonprofit organizations.

1. INTRODUCTION

Molecular association (binding) plays a key role in cellular
function and communication, and many illnesses can be directly
linked to an improper balance of interactions among distinct
molecular species. Of special importance are those established
between different proteins or between small molecules and
proteins. In the latter case, we usually talk about ligands and
receptors, but in the following, we will use this terminology to
refer to the two binding partners. Understanding how binding
takes place and how this event can be theoretically modeled is of
paramount importance in today’s drug discovery campaigns,1

especially in fields like protein engineering,2 ligand and fragment
docking,3 virtual screening (VS),4 and computational muta-
genesis,5 among others.
A large number of methodological advances have been

introduced since the first theoretical simulation of a biologically
relevant system6 that, in favorable cases, allow one to reproduce
experimental binding affinities with an error comparable to that
of the experimental measurements.7 On top of that, modern
computers, sometimes including tailor-made architectures (e.g.,
the Anton machine8), and supercomputers9 allow researchers to
undertake calculations that were unimaginable just a few years
ago to address difficult problems such as simulating protein
folding,10 long MD of very large systems,11 or unbiased drug
binding patterns.12

Nevertheless, although theoretical methods and computer
technologies are continuously improving, there are still some
bottlenecks. Representative examples are intrinsically massive
calculations, as undertaken in VS, where the number of
molecules to be simulated can reach the order of several millions,
and the analysis and interpretation of long MD trajectories
especially when solvent effects must be properly accounted for,
per-residue analyses must be performed, or one wishes to
estimate elusive entropic effects.
Here, we are interested in the electrostatic contribution to the

free energy of binding, and more specifically in the effect played
by the solvent. There are two opposite, although complementary,
ways to account for this effect:13 either representing the solvent
explicitly by means of a set of discrete water molecules
surrounding the solute or via a mathematical function able to
describe the behavior of the bulk solvent. There are also examples
in which both methods have been combined in a sort of hybrid
solvent model.14 However, both have advantages and caveats,
and selecting the most appropriate description for a particular
study greatly depends on the computational power available, as
explicit models require the calculation of a large amount of
interactions due to the presence of numerous water molecules.
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For docking-related tools, implicit models are usually preferred,
as they are faster than their explicit counterpart while performing
quite similarly. Implicit models start by solving the classical
Poisson equation (PE).15 But, in many cases it is too
computationally expensive, and other alternatives such as the
generalized Born (GB) model are employed instead.16 In
addition, solvation models based on group contributions
(effective energy function, EFF1) have also been proposed and
successfully employed in proteins17 and protein−ligand force
fields.18

In this paper, we extend our previously developed GB-like
solvent model, called ISM (Implicit Solvent Model),19 to the
protein−protein docking problem and compare its performance
to well-established methods like APBS (PE solver) and MM-
PB(GB)SA (as implemented in AmberTools20) using two
different test sets. For the procedures to be strictly comparable,
we first incorporated MM (Molecular Mechanics) and SA
(Surface Area) terms to the APBS (MM-APBSSA) and ISM
(MM-ISMSA) methods. Comparisons between the three
different techniques were performed in order to assess their
relative speeds and to validate the different values provided by
our method for total binding free energies, individual
components, and per residue energy decompositions. Finally,
to extend the usability of MM-ISMSA within the scientific
community, we have developed a graphical user interface (GUI)
that allows its use via the popular PyMOL program.21 This
plugin, which can be used to analyze single structures or
complete MD trajectories, can be downloaded following free
registration from the CBM Bioinformatics Unit’s web page
(http://ub.cbm.uam.es).

2. THEORETICAL BACKGROUND

2.1. Statistical Thermodynamics of Binding: Interac-
tion Terms. According to classical thermodynamics,22 molec-
ular association can be described as an equilibrium ([R] + [L]⇌
[RL], where R and L represent receptor and ligand, respectively,
and RL, the complex formed between them) governed by the
association and dissociation rate constants. The ratio between
them is the equilibrium binding constant, K, which is related to
the free energy change taking place in the process (ΔGbinding) by
the well-known equation:

Δ = Δ − Δ − Δ = −G G G G R T Klnbinding RL R L gas (1)

where Rgas is the universal gas constant, T is the temperature in
Kelvin, andΔGX represents the free energy corresponding to the
complex (X = RL), receptor (X = R), and ligand (X = L).
The calculation of ΔGbinding would entail extremely lengthy

simulations in which the ligand diffuses into the receptor’s
binding site, but this is hardly ever done. As useful alternatives,
the ligand can be “grown” slowly both in the bulk solvent and
inside the binding site to calculate free energy differences,7 or
ΔGbinding can be estimated as the difference between the free
energies of bound and unbound states, as in linear interaction
energy (LIE)23 and MM-PB(GB)SA24 “end-point” methods.
It has been customary to describe the binding process through

the thermodynamic cycle in Figure 1, where ΔGint refers to the
binding process in the gas phase, and ΔGsolv

RL , ΔGsolv
R , and ΔGsolv

L

are the free energies of solvation for the complex, receptor, and
ligand, respectively. Next, becauseΔGbinding is a state variable, the
cycle can be solved to yield:

Δ = Δ + Δ − Δ − Δ

= Δ + Δ

G G G G G

G G

binding int solv
RL

solv
R

solv
L

int solv (2)

Usually, from Figure 1 and eq 2 the solvation contribution
(ΔGsolv) is obtained as a single term (e.g., in GB) and, as a
consequence, individual solvation energies for the ligand and
receptor are not available. As an alternative, a different
description of the binding process25 can be considered (Figure
2) that consists of first desolvating the apposing surfaces of both
ligand and receptor and then letting the charges of the two
molecules interact.

Thermodynamically, ΔGbinding has an enthalpic (ΔHbinding)
and an entropic (ΔSbinding) component:

Δ = Δ − ΔG H T Sbinding binding binding (3)

ΔHbinding contains van der Waals (ΔGbinding
vdW ), hydrogen bonding

(ΔGbinding
hb ), and solvent-related contributions that can be further

subdivided into polar (ΔGbinding
p ) and apolar (ΔGbinding

np )
components. The former contains the Coulombic interactions
(ΔGbinding

elec,coul) together with ligand (ΔGbinding
elec,desolvR) and receptor

(ΔGbinding
elec,desolvL) desolvation terms, whereas the latter includes the

cavitation term (the work required to create a cavity within the
solvent to introduce the solute) and the van der Waals solute−
solvent interactions. A linear relationship is usually assumed
between the composite of the latter two components and the
change in solvent-accessible surface area (SASA) of the ligand
and receptor upon binding. On the other hand, the entropic
contribution arises from the loss of some protein degrees of
freedom that become frozen when the complex is formed and
also from solvent reorganization, as some water molecules
present within the binding site will be released to the bulk solvent

Figure 1. Graphical representation of the commonly used thermody-
namic cycle to estimate ΔGbinding. The shadowed boxes represent the
systems (receptor, ligand, and complex) immersed in the solvent.

Figure 2. Alternative description of the binding process to estimate
ΔGbinding. This type of equilibrium is commonly used in combination
with PE solvers. White molecules are uncharged, and they are used to
replace the high-dielectric solvent with a low-dielectric medium in the
desolvation calculations.
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as a consequence of the binding event. This entropic
contribution is rarely taken into account when ΔGbinding is
computed due to its complexity, high computational demand,
and slow convergence.26 The electrostatic component is the
most challenging term, and this will be the focus of the present
work.
2.2. The PE Model. The classical way to deal with the

electrostatic contribution to the binding energy (ΔGelec) is by
solving the PE, which relates the electrostatic potential ϕ(r) and
the charge distribution ρ(r):

ε ϕ πρ∇ ·∇ = −r r r[ ( ) ( )] 4 ( ) (4)

where ε(r) is a distance-dependent dielectric function. For a
given ρ(r), ϕ(r) can be calculated via the PE so that

∫ ρ ϕΔ =G r r v
1
2

( ) ( ) delec (5)

Because the analytical solution of PE is possible only for very
simple geometries, for biological molecules we have to rely on
numerical methods such as finite differences,27 finite elements,28

or boundary elements.29 Nonetheless, solving the PE is still a
computationally demanding task in many molecular modeling
areas, despite constant improvements over the years.30

Equation 5 can be used in different ways to obtain an
estimation of the binding free energy, either by computing the
desolvation terms of the thermodynamic cycle depicted in Figure
1 (as implemented in theMM-PBSAmethod) or by applying the
cycle shown in Figure 2 as described in section 3.2.1, where the
Coulombic contribution is obtained by computing the product of
ligand charges times the electrostatic potential generated by the
protein on the ligand charge centers. On the other hand, receptor
and ligand electrostatic desolvation energies are calculated in two
successive steps (Figure 2): a first one, where a calculation is
performed for the receptor and ligand alone, and a second one,
for the ligand in the complex, with uncharged receptor, and for
the receptor in the complex, with uncharged ligand.
2.3. The GB Model. The GB model is based on the Born

approximation and can be easily derived from the PE, assuming a
spherical solute that has the whole charge located at its center,
according to

ε
Δ = − −⎜ ⎟

⎛
⎝

⎞
⎠G

q
r

(Born) 166 1
1

solv
elec

2

(6)

where ε is the dielectric constant of the solvent, and q and r are
the charge and the radius of the sphere, respectively. Taking into
account that molecules can be represented as a set of interacting
spheres, eq 6 can be generalized to the expression commonly
used in the GB models:

∑ ∑
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where N is the total number of atoms, rij is the distance between
atoms i and j, qi and qj are the atomic charges of atoms i and j, and
f GB is the GB function defined as

α α= + α α−f r i j r( , , ) [ e ]ij ij i j
r

GB
2 ( /4 ) 1/2ij i j

2

(8)

α is the so-called effective Born radius, which is the distance from
an atom to the molecular surface. Note that f GB is different
depending on the system, that is, the receptor, the ligand, or the
complex. In eq 7, the first term (ΔGvac) represents the
electrostatic interaction in vacuo, while the second (ΔGpol)
accounts for the polarization effects due to the solvent. In fact, it is
this second term that is calculated as the electrostatic component
of the free energy of solvation in GB-based methods, and as such
it has been implemented in many different programs and, in
particular, in the AmberTools package.
Applying eq 7 to the thermodynamic equilibrium depicted in

Figure 1, it is possible to separate the electrostatic interaction
between charges (in a vacuum and in the solvent) from the pure
desolvation terms for the receptor and ligand:
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Unfortunately, as commented upon above, the GB method as
implemented in AmberTools does not allow for such
decomposition, and only the total polarization energy is obtained
(ΔGpol in eq 7). Nevertheless, setting the atomic charges in the
receptor/ligand to zero and subtracting the resulting GB term
from the GB term of a standard calculation would afford the
ligand/receptor desolvation terms independently. Accordingly,
zeroing the ligand’s charges:

∑ ∑
ε

ΔΔ = Δ − Δ =

= − − −
= =
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The same can be done if the receptor’s charges are zeroed:

∑ ∑
ε

ΔΔ = Δ − Δ =
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(11)

Choosing this alternative would require (a) manipulating the
topology (top) files used by AmberTools to set the charges of the
ligand (or the receptor) to zero and (b) an additional GB
calculation (ΔGpol in eq 7) to obtain the Coulombic interaction
screened by the solvent (ΔGscreened, the first right-hand term in eq
9). That is, taking into account

Δ = Δ + Δ + ΔG G G Gpol screened desolv
R

desolv
L

and the fact that we can calculate both desolvation energies as
shown above:
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Δ = Δ − Δ − ΔG G G G(GB)screened solv
elec

desolv
R

desolv
L

three calculations are needed to obtain the total free energy of
solvation and its components.
2.4. The ISM Model. The model starts from the Lorentz−

Debye−Sack theory of polar liquids,31 which establishes that the
screening effect due to the solvent shows a sigmoidal distance-
dependent dielectric function of the form:

ε= +
+

−
λ ε− +D r

k
( )

1
1 e

1
r( 1) (12)

where ε is the solvent dielectric constant, k = (ε − 1)/2, λ is a
parameter controlling the rate of change of D(r), and r is the
distance. ISM considers that the main contribution to the
electrostatic desolvation of an atom originates from the
displacement of the first shell of water molecules that surrounds
that atom. Taking these two facts into account, ISM’s starting
equation, as proposed by Hassan et al.,32 is the following:
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where Ri,Bs and Ri,Bv are the effective Born radii for the processes
of transferring an atom from a vacuum into a protein interior,
surrounded by either solvent or a vacuum, respectively. The
model has proven to be useful to study the structure and
dynamics of proteins33 and has been implemented as a solvation
method within the molecular dynamics code of the program
CHARMm.34

This model has been extended by us to deal with ligand−
receptor19 and protein−protein interactions (this work).
Considering the thermodynamic cycle of binding depicted in
Figure 1 and the expression for ΔGsolv

elec(ISM):
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where the superscripts c and u stand for complexed and
uncomplexed forms of both the ligand and receptor. There is an
evident resemblance between ISM (eq 14) and GB (eq 9)
formulations: the first term describes the interaction established
between the receptor and ligand screened by the dielectric
function, and the second is the desolvation penalty, accounted for
by the difference between complexed and uncomplexed partners
in terms of their Born radii and dielectric function in the solvent.
As an additional advantage, ISM directly yields individual

desolvation terms without the need to perform any extra
calculations, as commented upon before for GB. In fact, to isolate
the desolvation term for the receptor, only the summation of the

atoms concerning the receptor must be considered in the GB-like
term (second term on the right-hand side of eq 14), which is the
same as setting to zero the ligand’s charges (eq 15) or, for the
ligand desolvation term, setting to zero the receptor’s charges (eq
16):
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2.5. Pairwise Decomposition of the Binding Energy.
The value of the free energy of binding as a whole is useful when
comparing the binding strength of a set of ligands toward a target
of interest. However, it does not provide any information on the
relative contributions of individual residues. Knowing which
residues are the most important in the interaction would allow
the design of specific mutations to increase or even disrupt the
association in protein−protein complexes. In protein−ligand
docking, this knowledge is essential to suggesting chemical
modifications on ligand structures guided by the binding site
residues. Accordingly, several approaches have been devel-
oped.35,36

The MM-PB(GB)SA method, as implemented in Amber-
Tools, has all the terms already pairwise decomposed, as a
consequence of the double summations in eq 7. On the other
hand, in MM-ISMSA the solvation term entails a single
summation (eq 14), so the individual solvation for each residue
is obtained but not the corresponding contribution of a given
interacting pair. The simple addition of the individual solvation
values would overestimate this contribution, as not only the
atoms involved in the interaction take part in its calculation but
also those from their environments. Therefore, we have devised a
weighting scheme (see Methods) by means of which the
solvation contribution of a given pair is balanced by the sum of
the van der Waals and Coulombic interaction in which any of the
two residues in that pair is involved.

3. METHODS
3.1. Nonelectrostatics Calculations. We refer here to the

calculations involving the van der Waals and the solvent
accessible-related terms to account for shape complementarity
and the loss in surface area produced upon complex formation
(the nonpolar part of the desolvation), respectively. van der
Waals interactions (ΔGvdW) are calculated through the well-
known 12−6 Lennard-Jones potential:

∑Δ = −
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥G

A

r

B

rij

ij

ij

ij

ij
vdW 12 6

where Aij and Bij are the van der Waals parameters of the atom
types to which atoms i and j belong, and rij is the distance
between the ith atom in the protein and the jth atom from the
ligand. Aij and Bij parameters were taken directly from the
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AMBER ff03 force field.37,38 The nonpolar part of the
desolvation (ΔGnp) was modeled as a linear relationship to the
change in SASA:

Δ = + ·ΔG a b SASAnp

where a is 0.092 kcal·mol−1, b is 0.00542 kcal·mol−1 Å−2, and the
change in SASA refers to the complex SASA minus the sum of
that of the protein and the ligand alone. SASA values were
obtained with our own implementation of the LCPO
approximation.39

Both terms were added to the ISM electrostatic scoring
function to configure a more complete tool termed MM-ISMSA,
in clear allusion to MM-PB(GB)SA and related approaches.
3.2. Electrostatic Calculations. In all of the cases where PE

was employed, we refer to the linearized Poisson−Boltzmann
equation; that is, the Boltzmann part of the equation (related to
ions in solution) was not taken into account. Atomic radii were
automatically assigned with the tleap module in AMBER 10 so
that they correspond to the “modified Bondi” set.40

3.2.1. APBS. APBS uses the adaptive finite element method to
solve the Poisson−Boltzmann equation numerically.30 First, grid
size, grid center, and the number of grid points were computed
with the psize.py module provided in the APBS package, which
properly fits the input complexes into their respective grid boxes.
Then, the following parameters were chosen: (a) dielectric
constants of 4 and 80 for solute and solvent, respectively, (b) a
dielectric boundary calculated using a solvent probe radius of 1.4
Å, (c) potentials at the grid points delimiting the box calculated
using the multiple Debye−Hückel method, and (d) multigrid PB
calculations configured to run in automatic mode. All of these
calculations were performed with the APBS program (see section
2.2).
3.2.2. PB/GB. For PB calculations, each complex was

immersed in a cubic box with a grid spacing of 0.5 Å. The solute
dielectric constant was set to 4, while that of the solvent was set to
80, and the dielectric boundary was calculated using a solvent
probe radius of 1.4 Å. The potentials at the grid points delimiting
the box were calculated analytically by treating each charge atom
as a Debye−Hückel sphere. Similar parameters were employed
for GB calculations, namely, the internal and external dielectric
constants and the solvent probe radius. These calculations were
performed withmm_pbsa.pl andMMPBSA.py scripts as provided
in the AMBER package.
3.2.3. ISM. ISMmodels the screening effect due to the solvent

by means of a sigmoidal distance-dependent dielectric function
(eq 12). Solvent-related parameters are the slope of the sigmoidal
dielectric function (λ), which has two values, 0.013 for all of the
atoms except for those with a formal positive charge and 0.007 for
the latter ones; ε, the dielectric constant of the bulk solvent (80);
and the solvent probe radius (1.4 Å) to calculate the SASA. For
additional parameters, the reader is referred to the original
publications.19,32 All of these calculations were performed with
our in-house version of the ISM program (eq 14).
3.3. Hydrogen Bonding Term.The existence of a hydrogen

bond was characterized by defining the three atoms involved in
the interaction (donor, D; acceptor, A; and the proper hydrogen
atom, H) plus the atom bonded to A (X) and three geometrical
parameters describing the relative disposition of these atoms: (1)
the A···H distance (r), (2) the D···H···A angle (α), and (3) the
H···A···X angle (β).
As a training set, we used the Astex Diverse Set (ADS) of

protein−ligand complexes. On the other hand, the test sets
included the 23 protein−ligand complexes used in the original

ISM paper and the 15 protein−protein complexes previously
described in section 3.4. Each complex in the training set was
visually inspected in PyMOL to determine the number and
geometrical parameters of all of the possible hydrogen bonds,
whereas for the first test set the program LIGPLOT,41 as
implemented in the PDBsum web server,42 was used. The first
test allowed us to check to what extent the parameters derived for
hydrogen bonds in protein−ligand complexes could be extended
to protein−protein assemblies. As a default, rwas set to 3.5 Å and
α to 90°, and no restrictions were imposed on the β angle.
Finally, for the second test set, the hydrogen bonds obtained with
the HBPLUS program,43 employing default parameters, were
used for comparison.
The distributions of r, α, and β values were analyzed by means

of the nonparametrical BOX plot statistical technique. A set of
ideal values and upper and lower limits were defined for each
variable. These values and the shape of the data distribution were
incorporated into ad hoc block functions to determine the
contribution of each parameter (eq 17) to the total score for each
hydrogen bond (HBScore(i), eq 18):

=

≤ ≤

−
−

−
≤ ≤

−
−

−
≤ ≤

<

>

− −

−

−
−

−

−
−

⎧

⎨

⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪

x

x x x
x x

x x
x x x

x x
x x

x x x

x x

x x

score( )

1 if

1 if

1 if

0 if

0 if

min ideal max ideal

min ideal

min ideal min
min min ideal

max ideal

max max ideal
max ideal max

max

min

(17)

where x refers to r, α, and β, and ideal and max values are those
obtained from the BOX plot analysis.

∏=i xHBScore( ) score( )
x (18)

Hydrogen bonds were further classified by the type of
interactions in charged−charged (cc), neutral−charged and
charged−neutral (nc), and neutral−neutral (nn) and assigned a
numerical value of −3, −2, and −1 kcal/mol, respectively.
Finally, HBScore(i) was used to weigh the interaction energy for
each hydrogen bond to configure ΔGHB:

∑Δ =
=

G i E iHBScore( ) ( )
i

HB
1

NHB

HB
(19)

where i stands for each hydrogen bond; NHB is the total number
of hydrogen bonds; and EHB(i) is equal to −3, −2, or −1
depending on the type of hydrogen bond.

3.4. MM-ISMSA Scoring Function. According to the terms
described in the above sections (3.1, 3.2.3, and 3.3), the starting
equation for MM-ISMSA (eq 20) reads as follows:

Δ = Δ + Δ + Δ + Δ

+ Δ + Δ

G G G G G

G G

binding vdW elec desolv
R

desolv
L

apo HB (20)

3.5. Comparison between Methods. A validation test set
consisting of 15 antigen−antibody complexes with available 3D
structures (PDB ID codes: 1AHW, 1BGX, 1BJ1, 1BVK, 1DQJ,
1FSK, 1I9R, 1IQD, 1JPS, 1KXQ, 1MLC, 1NCA, 1NSN, 1VFB,
and 2E6J) was used to compare the performance between MM-
ISMSA and the other methods in terms of interaction energies
(total, individual terms, and pairwise decomposed). Up to 100
docking poses for each complex were obtained using program
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FRODOCK44 for a total of 1242 structures. Then, the following
protocol was employed for each single complex: (a) The
AMBER ff03 force field was used to assign atom types and partial
charges to each atom in the complexes. (b) Hydrogen atoms
were added using the tleap module from the AMBER suite
assuming standard protonation states for titratable groups. (c)
The structures were subjected to an energy refinement process
using the GB implicit solvent model as implemented in sander
(500 cycles of steepest descent followed by 1000 cycles of
conjugate gradient until the root-mean-square value of the
potential energy gradient was below 0.1 kcal·mol−1·Å−1) to
remove possibly existing steric clashes. (d) APBS, MM-ISMSA,
and MM-PB(GB)SA calculations were performed on the refined
complexes. Finally, we compared the numerical values for the
total free energy of binding and its vdW and electrostatic
components (Coulombic and desolvation terms) obtained with
the three methods.
3.6. The MM-ISMSA Scoring Function in Protein−

Protein Docking. A diverse set of 15 protein−protein
complexes with experimentally determined 3D structures was
taken from the PDB (PDB ID codes: 2FUE, 2JK6, 2LYN, 2O3B,
2ONE, 2Y43, 3AAB, 3AIK, 3DH9, 3F1R, 3G3G, 3MIO, 3PC6,
3PY2, and 3KF3) and used to test the ability of the MM-ISMSA
scoring function to select near-native docking poses from a pool
of incorrect solutions (decoys). Each complex was separated into
two individual structure files containing the receptor and the
ligand. The addition of hydrogen atoms and computation of the
protonation state of ionizable groups at pH 6.5 were carried out
using the H++ server,45 which relies on AMBER force-field
parameters and finite difference solutions to the Poisson−
Boltzmann equation. Then, for every pair, the ClusPro server46

was used to generate different docking poses, and the 10 best-
ranked solutions were selected. These structures (plus the native
ones) were energy minimized using sander. Finally, MM-ISMSA
calculations were performed on these refined structures.
The quality of the ranking provided by the MM-ISMSA

scoring function was compared to the quality of the docking
poses in terms of the set of common contacts found in the
docking pose and the native structure, that is, the contact overlap
(Coverlap; eq 21). Two residues were considered to be in contact if
any of their respective atoms were closer than a given cutoff
distance, 4 Å in our case:

=
∑

∑ ∑
∈ ⊂ C

C C

C C( )( )
[0, 1]ij ij

a
ij
b

ij ij
a

ij ij
boverlap

(21)

where i and j stand for receptor and ligand residues, respectively,
while a and b represent the native and decoy structures,
respectively. Then, Cij

a refers to the contacts in the native
structure (1 if the contact between i and j exists, 0 otherwise) and
Cij
b, to those in the decoy.
As it is more common to assess the structural goodness of a

scoring function in terms of the root-mean-square deviation
(RMSD) found between a scored solution and the correspond-
ing native structure, we have also employed it for comparative
purposes although it has been demonstrated that in some cases
this measure is devoid of accuracy. We have termed this
parameter RMSDL, and its calculation encompasses two steps:
first, the alignment of the receptor structure using theMcLachlan
algorithm47 and, second, the evaluation of the RMSD for
backbone atoms of the whole superimposed structure. These
calculations were performed with the ProFit software.48

3.7. Pairwise Decomposition. To calculate the pairwise
decomposition of the interaction energy, we have devised a
weighting scheme by means of which the solvation contribution
of a given pair (polar [eq 22] and nonpolar [eq 23]) is balanced
by the sum of other interactions (vdW andCoulombic) involving
any of the two residues in that pair:
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where i and j are the interacting residues belonging to the
receptor and ligand, respectively, and
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Based on this scheme, we have classified receptor−ligand
interaction pairs into three types: (a) hydrogen bonding; (b)
hydrophobic (which includesΔGvdW and nonpolar contributions
from ΔGdesolv

R , ΔGdesolv
L , and ΔGapo); and (c) hydrophilic (which

includes ΔGelec and the polar contribution from ΔGdesolv
R ,

ΔGdesolv
L , and ΔGapo). Polar and apolar contributions are

calculated according to atom types. Namely, N and O atoms
are considered polar and the rest apolar. Therefore, any
interacting pair is classified as (a) hydrogen bonding, whenever
a hydrogen bonding interaction is detected, independently of the
other interactions that may occur; (b) hydrophilic, if the relative
weight of the hydrophilic term in the total interaction energy is
above 60%; (c) hydrophobic, if the relative weight of the
hydrophobic term in the total interaction energy is above 60%;
and (d)mixed, if the relative weight of the hydrophilic term in the
total interaction energy is found to be between 40% and 60%.

3.8. Computational Performance. In this section, we
analyze our scoring function (MM-ISMSA) and the MM-
PB(GB)SA method in relation to their implementation within
the AMBER suite, including the old version (mm_pbsa.pl) as well
as the new one (MMPBSA.py), and their efficiency. First, we
analyze the implementation of the algorithms focusing on the
programming language employed and how the calculated data
are stored and handled. Then, we estimate the efficiency (or the
complexity, T) of the algorithms employing the commonly used
asymptotic approach (assuming a very large amount of input
data) and the bigO notation as the parameter to state the order of
running time growth. As the elemental unit function, we consider
a single energetic calculation which, depending on the method, is
represented by the following functions:

= · + +−T N N N N( )MM ISMSA R L R L (24)

= + + +−T N N N N( )MM PB(GB)SA R L
2

R
2

L
2

(25)

NR and NL stand for the number of atoms in the receptor and
ligand, respectively.

3.9. MM-ISMSA Graphical User Interface. All of the
functionalities available from the MM-ISMSA code have been
implemented in a graphical user interface (GUI), written in the
Python programming language. This allows its facile use as a
plugin to the popular molecular visualization program PyMOL.
The GUI front end uses PyMOL software version 1.2 or higher
and requires the NumPy (version C 1.3) module and the
portable command-line driven graphing utility gnuplot (version
4.6). The GUI has been prepared to be executed on Linux
operating systems. The minimum recommended amount of
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main memory is around 800 MB (for an average of 900 residues
in total per system), and no significant storage capabilities are
required to hold the outcomes of the calculations.

4. RESULTS AND DISCUSSION

4.1. MM-ISMSA Compared to MM-APBSSA and MM-
PB(GB)SA. In this section, we first compare the numerical values
for the total binding free energies (ΔGbinding) as obtained from
MM-ISMSA, MM-APBSSA, and MM-PB(GB)SA methods. We

findMM-ISMSA reproduces MM-APBSSA’sΔGbinding with great
accuracy (r2 = 0.93, Figure 3a) as it does when compared toMM-
PBSA (r2 = 0.94, Figure 3b) or MM-GBSA (r2 = 0.97, Figure 3c).
In addition, we obtain small deviations fromMM-PBSA (slope =
0.92) and MM-GBSA (slope = 1.06) and slightly higher from
APBS (slope = 0.80). Finally, when MM-PBSA is compared to
MM-GBSA in terms of the total interaction energy, the
correlation coefficient (r2 = 0.95), slope (0.86), and intercept
(−3.16) are similar to the values obtained when comparing MM-

Figure 3.Correlation between total binding free energies (ΔGbinding in kcal/mol) as obtained by (a) MM-APBSSA, (b) MM-PBSA, and (c) MM-GBSA
methods and by the MM−ISMSA method.

Figure 4. Comparison of total electrostatic binding free energies and their different contributions as obtained by APBS and ISM. (a) Total electrostatic
binding free energy. (b) Coulombic contribution. (c) Receptor desolvation. (d) Ligand desolvation.
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ISMSA to either MM-GBSA or MM-PBSA. As the non-
electrostatic terms (ΔGvdW and ΔGnp) are always computed in
the same way, the rest of this section will focus on the
electrostatic part (ΔGbinding

elec ) of ΔGbinding and its decompositions
into the Coulombic (ΔGbinding

elec,coul) and receptor and ligand
desolvation terms (ΔGbinding

elec,desolvR and ΔGbinding
elec,desolvL, respectively).

In the following, unless otherwise stated, we will refer to the
methods simply as APBS, ISM, GB, or PB.
The correlation between APBS and ISM in terms of ΔGbinding

elec

is very good (r2 = 0.83, Figure 4a), and the same is true when
individual components are considered: ΔGbinding

elec,coul (r2 = 0.86,
Figure 4b),ΔGbinding

elec,desolvR (r2 = 0.82, Figure 4c), andΔGbinding
elec,desolvL (r2

= 0.81, Figure 4d). Slopes are close to unity (1.15 for ΔGbinding
elec,coul

and 1.17 for ΔGbinding
elec,desolvL) or slightly higher (1.24 and 1.25 for

ΔGbinding
elec and ΔGbinding

elec,desolvR, respectively), and the intercepts are
very small in all cases.
Furthermore, when ISM is compared to either PB (Figure 5a)

or GB (Figure 5b), the correlation coefficients (r2 = 0.82 in both
cases), slopes (1.13 and 0.75), and intercepts (1.79 and 1.09) are
on the same order as before.

As stated above, the thermodynamic cycle on which ISM is
based (Figure 2) directly dissects, by construction, the
electrostatic contribution to binding into its components (eq
13) in just a single step. On the contrary, three calculations are
needed to obtain the same partition scheme when PB or GB
models (eqs 9−11) are employed. In particular, when the triple
calculation is used, ISM compared to GB (Figure 6) affords a
correlation coefficient close to 0.9 (r2 = 0.85) for both
desolvations (Figure 6b,c), while the slopes indicate that these
values are overestimated by the GB model (0.75 and 0.74 for
receptor and ligand desolvation, respectively). The agreement
between Coulombic terms is even better, with both the
correlation coefficient and the slope yielding a value of ∼0.9
(Figure 6a).

4.2. The MM-ISMSA Scoring Function in Protein−
Protein Docking.We have challenged the MM-ISMSA scoring
function by mixing the native structures for a set of 15 protein−
protein complexes with docking decoys (10 for each complex
obtained from the ClusPro program) and then evaluating the
binding free energy for each complex (eq 14). Although this

Figure 5. Comparison of total electrostatic binding free energies obtained by ISM with those calculated using (a) PB (as implemented in MM-PBSA)
and (b) GB (as implemented in MM-PBSA).

Figure 6.Comparison between GB and ISM in terms of the different contributions to the total electrostatic binding free energy as obtained by applying
the three-calculation method. (a) Coulombic contribution. (b) Ligand desolvation. (c) Receptor desolvation.
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function provides more detailed information on the binding
event than just the global value of the binding energy (hydrogen
bond types and count, HBScore, van der Waals and electrostatic
interactions, desolvation terms, etc.), we were not able, however,
to discriminate between the native structure and the decoys on
the basis of this detailed individual information. Rather, it was
only the global binding energy parameter which really selects the
native pose as the best scored pose among the decoys in 12 out of
the 15 complexes studied here (80% of success, Figure 7).

The finding that descriptors as important as the types and
number of hydrogen bonds or the electrostatic complementarity
between receptor and ligand, considered as essential in protein−
protein recognition, are not able to discriminate a native
structure from a pool of decoys might be due to the ability of
ClusPro to provide challenging docking poses, although with a
significant difference in contact patterns (Figure 8a). In fact, less
than half of the complexes showed Coverlap values above 0.7. On
the contrary, ClusPro is able to supply in most of the cases (10
out of 15) a decoy closer than 10 Å to the native structure (Figure
8b).
Finally, we have a weak correlation (r2∼ 0.5−0.6) between the

rankings provided by MM-ISMSA and the contact overlap
(Figure 9a) or RMSDL (Figure 9b). Despite these modest figures
it is worth noting that in many cases (10 out of 12 if complexes
without very lowCoverlap values are excluded) good docking poses
according to the MM-ISMSA scoring function usually

correspond to an assembly with high and low Coverlap and
RMSDL values, respectively.

4.3. Pairwise Decomposition. Figure 10 shows the
relationship between all individual inter-residue interaction
energies calculated by MM-ISMSA and MM-GBSA for the 15
proteins in the second test set. A very good correlation was
obtained (r2 = 0.95), indicating the feasibility of employing MM-
ISMSA as an alternative to MM-GBSA.

4.4. Computational Performance. In routine calculations,
when dealing with relatively large protein−protein complexes,
we have found a tremendous bottleneck in the use of the
mm_pbsa.pl module in AMBER to obtain the partition of the
interaction energy into pairwise residue contributions. In fact,
this decomposition scheme is actually impracticable in many
cases due to the large execution times required, not to mention
the huge demands on memory and disk space. After some careful
examination, we concluded that the main culprit for this
appeared to be the use of hash tables to store the data. On the
other hand, we were aware that perl, being an interpreted
language, is not adequate to handle highly computationally
demanding mathematical calculations. To circumvent these
problems, we decided to rewrite in C programming language the
main part of the mm_pbsa.pl module where the statistical
calculations are performed (mm_pbsa_statistics.pm module),
replacing the hash tables with single arrays. We refer to this new
code as optimized mm_pbsa.pl. By the time we were developing
this optimized code, a new version of the mm_pbsa.pl module
was released under the name MMPBSA.py. This new version
avoids some problems of the early module by executing sander
binaries on each snapshot and using a more adequate data
structure and methods from Python programming language.
Then, we compared the performance of the MM-ISMSA code to
the old (mm_pbsa.pl) and new (MMPBSA.py) modules
implemented in the AMBER package and to the C optimized
module (Figure 11) in terms of execution times.
Three main observations can be derived from Figure 11: First,

in the limit of high number of residues, the ISM code achieves
execution times 4 orders of magnitude smaller than the old
mm_pbsa.pl module. Second, at the same limit, the new
implemented MMPBSA.py and our mm_pbsa.pl optimized
module show very close execution times. Third, ISM outper-
forms all the other codes tested here, irrespective of the number
of residues used in the calculation.
Continuing with the pairwise residue decomposition, and

according to eqs 24 and 25 above, it is relatively straightforward
to realize that the efficiency of both algorithms grows on the

Figure 7.Total free energies of binding for each of the decoys and the X-
ray structure in the test set. The small black dots represent the decoys,
while the black squares symbolize the X-ray structure.

Figure 8. (a) Contact overlap (eq 21) and (b) RMSDL for the decoys generated with ClusPro for each of the targets in the test set.
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order of O(N2), provided that NR and NL are of the same
magnitude. However, the number of operations to be done in
MM-ISMSA is smaller than inMM-PB(GB)SA, and this is due to
the double counting of the cross-interaction terms between the
receptor and the ligand in the latter method (double summation
in eq 7,ΔGpol term, with the indexes running from 1 toN for both
receptor and ligand, respectively), while in the former they are
calculated just once (single summation in the second term on the

right-hand side of eq 14 with a single index running from 1 to the
total number of atoms in the complex). To analyze in more detail
the relative performance of both algorithms, we studied the two
most representative cases: (a) protein−protein docking
assuming an equal number of residues for both the receptor
and ligand and (b) protein−ligand docking, where the number of
ligand residues (one) can be neglected as compared to the
number of residues in the receptor. Then, in the case of protein−
protein docking:
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and in the case of protein−ligand docking, we obtain:
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Therefore, even though both algorithms scale within the same
complexity order for protein−protein interactions (eq 26), the
differences are significant mainly due to the fact that MM-ISMSA
performs six times less operations than MM-PB(GB)SA. To
illustrate this point, consider a protein−protein complex
consisting of a dimer with an average size of 150 residues per
monomer. Assuming thatMM-ISMSA requires the same amount
of time to perform a unit calculation asMM-GBSA orMM-PBSA
does (around 0.005 and 2 s, respectively), these differences
would be translated into 83% or 98% savings in execution time,
for protein−protein or protein−ligand complexes, compared to
MM-GBSA or MM-PBSA, respectively.
Finally, it is worth commenting that under the assumption that

sander energies are calculated following an optimized compiled
code, and that the statistical optimized code accounts for less
than 0.01% of the total execution time, we can conclude that
sander has reached its optimization limit, and no further
improvement can be performed unless a new implementation
of the part of the code in charge of the energy calculations is
undertaken.

Figure 9. Relationships between (a) contact overlap (eq 21) and (b) RMSDL and ISM ranking based on the total binding energy for the decoys
generated with ClusPro for each of the targets in the test set.

Figure 10. Relationship between the pairwise-decomposed binding
energies obtained by MM-ISMSA and MM-GBSA methods for the 15
proteins in the second test set.

Figure 11. Run time (log scale) dependence on the number of residues
for the different methods compared in this study.
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4.5. Hydrogen Bonding. Table 1 contains the geometrical
parameters estimated from the statistical analysis of the hydrogen
bonds.

Using these values, we have been able to correctly recover
92.5% of the hydrogen bonds in the training set and 83.7% in the
first test set. In most of the cases, the reason why those hydrogen
bonds were not identified was either because their defining values
were close to the limiting ones or because their geometrical
arrangement cast some doubts on their formation. But more
importantly, their associated interaction energies were well
below the average energies obtained for the recovered hydrogen
bonds. Finally, for the second test set, all the hydrogen bonds
were identified when compared to HBPLUS as the reference
method.
4.6. The PyMOL Plugin. Due to the possible steep learning

curve of the application, which requires significant knowledge of
the underlying operations, we have implemented a GUI
accessible within the popular molecular editor PyMOL. This

plugin was designed to execute the application and process the
results of the calculations. Figure 12 shows some of the more
important graphic capabilities of the plugin, while a complete
description is included in the user’s guide available from theWeb
site.
Once the plugin is invoked from the PyMOL plugin interface,

it displays a window with four main sections organized in
different tabs: Configure, Run, Global Analysis, and Residue
Analysis. At the bottom of this window, an OK button closes the
plugin. The Configure tab, which is activated by default,
comprises the following fields: (a) an area that contains two
user-configurable variables (the path to the ISM executable file
and the working directory) and a Save button that allows the user
to save this configuration; (b) a second area that depicts the logos
of the institutions involved in its development; and (c) a
scrollable window with information about the plugin, its authors
and institutions involved, contact details, the license, the
disclaimer, and plugin update information.
The Run tab has two sections: (a) on the left, the user can (i)

select to work with a single structure (either a unique PDB file or
two top and crd AMBER-type files) or with anMD trajectory file,
(ii) set the type of input (single structure or trajectory file), and
(iii) set up the per residue analysis; (b) on the right, the user can
(i) set up the root name for the output files, (ii) in the case of an
MD trajectory file, select the initial, final, and step size of the
snapshot to be analyzed, and (iii) explore the output of the
calculation in a small window. A Run button on the right on this
window starts the calculation. A Stop button is also provided to
stop the calculation.
In the Global Analysis tab, the user can do the following: (a)

Load the results from a previous calculation by typing the root of
the file name or selecting the file. (b) Export the results of the
current calculation. The options are (i) a PDB file with the
desolvation energy values per residue loaded into the temper-
ature factor field for an easy visualization in PyMOL, (ii) a file

Table 1. Geometrical Parameters Defining the Hydrogen
Bonding Interactionsa

min min−ideal max−ideal max

r 1.5a 1.8a 2.4 2.7
α 100b 130 165b 180
β 90 115 145 180

ar, in Å, is the distance between the hydrogen and acceptor atoms, and
α and β, in degrees, are the angles between donor, hydrogen, and
acceptor atoms, and the hydrogen, acceptor, and the atom bound to
the acceptor atom, respectively. bThe final values for these variables
were finely tuned to avoid penalizing those hydrogen bonds that,
although geometrically plausible, are either statistically under-
represented (αmin = 90° and αmax‑ideal = 180°) or already penalized
by the van der Waals term (rmin = 0 and rmin‑ideal = 0).

Figure 12. Combined snapshots of some graphical capabilities provided by the PyMOL-implemented MM-ISMSA plugin.
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with the Global Energy and its components, and (iii) a file with
the Global Statistics in case an MD trajectory is processed. (c)
Visualize the contacts between ligand and receptor in PyMOL at
various levels: (1) all the contacts, (2) only hydrophobics, (3)
only hydrophilics, (4) mixed contacts, and (5) hydrogen bonds.
It is worth remembering that the contact classification is not
based on the type of side chains found in the interacting residue
but on the kind of interaction energy (see section 2.5). (d) Plot
the evolution of the different energetic terms along the MD
trajectory. These are Coulombic, van der Waals, receptor and
ligand desolvation energies, apolar, hydrogen bond, and total.
The last tab, Residue Analysis, allows the user to perform

single residue analysis and visualization. The main functionalities
available are as follows: (a) Load the results of a previous
calculation by typing the root of the file name or selecting the file.
(b) Export the results of the current calculation. The options are
(i) a file with the energies by residue with its components, (ii) a
file with the Global Statistics in case an MD trajectory is
processed, and (iii) a matrix with residue−residue interaction
energies. (c) Plot the evolution of the different energy terms
along the MD trajectory. These are Coulombic (cross term), van
der Waals (cross term), receptor and ligand desolvation energies
(single and cross terms), apolar (single term), and total (cross
term).
Within PyMOL, there are currently some other plugins

developed to run and analyze MD trajectories produced with the
AMBER suite of programs,49 to compute molecular electrostatic
potentials that can be used as the basis for the estimation of
binding and desolvation energies,30 or to calculate protein−
protein interactions.50 However, they are not as complete as our
MM-ISMSA plugin. On the other hand, a great variety of tools
are included within the molecular visualization program VMD51

to analyze MD trajectories calculated with the CHARMm force
field. But again, they appear as separate plugins although they are
completely integrated within the VMD working environment. In
addition, there are some Web-based applications that can
estimate contact and binding free energies in protein−protein
complexes,52 predict hot spot residues in protein interfaces,53

and analyze and visualize contacts at the interface of
biomolecular complexes,42,54 just to mention a few. Finally,
and as far as MD protocols are concerned, GUIs for the most
commonly used MD codes have appeared recently.55 Summariz-
ing, we think that our MM-ISMSA PyMOL plugin condenses
some of the advantages of the aforementioned tools while
maintaining its integrity in a single, unified tool that is
implemented in a widely used and powerful molecular graphics
program.

■ CONCLUSIONS
A new scoring function for protein−protein docking, MM-
ISMSA, which incorporates desolvation and hydrogen bonding
terms explicitly, is presented. This function allows calculation in a
given protein−protein complex of (i) the total binding free
energy, (ii) the contributions from different components, (iii)
individual residue desolvations, and (iv) all pairwise residue
interactions.
The accuracy of MM-ISMSA was tested using two different

protein−protein sets; in the first one, a total of 1242 structures
(15 experimentally determined antigen−antibody complexes
and 1227 decoys, with a maximum of 100 decoys per complex)
were used to study whether or not MM-ISMSA was able to
reproduce the interaction energies (i−iv above) as compared to
other well-established methods in the field. The results showed

that in all cases a good agreement was achieved. The second set
(15 diverse experimentally determined complexes and 135
decoys, with a maximum of 10 per complex) was used to test the
ability of the MM-ISMSA scoring function to select near-native
docking poses from a pool of solutions (decoys). The outcome
was an 80% success rate.
Besides its accuracy, an additional advantage of MM-ISMSA is

its reduced computational cost, as it is able to analyze large
systems (∼1000 residues) in less than 5 s, yielding a complete
report on the different energy terms and its decomposition.
Compared to the commonly used MM-PB(GB)SA method (as
implemented in AmberTools), MM-ISMSA performs 6 times
fewer calculations than MM-PB(GB)SA. For this reason, it
should be particularly preferable to process longMD trajectories.
Finally, MM-ISMSA has been implemented as a plugin for the

popular molecular visualization program PyMOL, although it can
also be used in command-line mode. The code is open source
and is offered free of charge to noncommercial parties for
download following registration at the CBM Bioinformatics
Unit’s web page (http://ub.cbm.uam.es/).
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