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Abstract A new approach is presented that combines

structure- and ligand-based virtual screening in a reverse

way. Opposite to the majority of the methods, a docking

protocol is first employed to prioritize small ligands

(‘‘fragments’’) that are subsequently used as queries to

search for similar larger ligands in a database. For a given

chemical library, a three-step strategy is followed consist-

ing of (1) contraction into a representative, non-redundant,

set of fragments, (2) selection of the three best-scoring

fragments docking into a given macromolecular target site,

and (3) expansion of the fragments’ structures back into

ligands by using them as queries to search the library by

means of fingerprint descriptions and similarity criteria.

We tested the performance of this approach on a collection

of fragments and ligands found in the ZINC database and

the directory of useful decoys, and compared the results

with those obtained using a standard docking protocol. The

new method provided better overall results and was several

times faster. We also studied the chemical diversity that

both methods cover using an in-house compound library

and concluded that the novel approach performs similarly

but at a much smaller computational cost.

Keywords Fragment screening � Structure-based virtual

screening � Ligand-based virtual screening � Docking �
Drug design

Introduction

The publication of Abbott’s seminal paper describing the

SAR (structure–activity relationships) by nuclear magnetic

resonance (NMR) method [1] introduced the fragment as a

new concept within the field of drug discovery, shifting the

emphasis from the paradigmatic more conventional ligands

(in terms of size and affinity) to smaller pieces. These

‘‘fragments’’ are usually endowed with reduced affinities

but are better suited for chemical modifications aimed at

producing novel drug candidates. Since its onset, the

technique has experienced a soaring success in large

pharma, small biotechs, and academia [2]. Fragments can

sample chemical space more effectively than regular

ligands do [3] and fragment docking clearly outperforms

traditional high-throughput screening in terms of hit rates

[4, 5]. Parallel to the purposeful deployment of customized

software, some other computational techniques have been

adapted to handle fragments, in particular those that

attempt to yield ligands by starting off from these building

blocks. Fragments can evolve virtually (by adding different

chemical decorations), be linked (to join two or more

fragments that occupy different regions of the binding site),

self-assemble (through direct bond formation between

different reacting fragments), and/or be optimized to better

fulfill drug-like properties. Fragments are usually docked

and scored, but due to the fact that their volumes are

smaller than the binding site cavity erroneous binding

modes can be obtained. Besides, scoring functions need to

be fine-tuned as they are parameterized for much larger
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molecular entities. Nonetheless, despite these deficiencies,

much progress has been made in the field and fragment-

based ligand design (FBLD) has become a routine tool

nowadays. Fragments can be designed de novo or obtained

from ligand databases by chemical dissociation (i.e.

fragmentation).

Virtual screening (VS) techniques that rely on the

structure of either the macromolecular receptor (SBVS) or

a known ligand (LBVS) use chemical libraries to search for

hits that can then be transformed into leads. But due to the

huge amount of ligands that can be found in today’s dat-

abases (e.g. 13 million in ZINC [6]), it is impractical, as

well as inefficient, to perform lengthy full docking studies.

To speed up the process, it is customary to employ a series

of computational cost-effective filters to narrow down the

number of molecules that will be subjected to the

demanding tasks of docking and scoring. Lipinki’s rule of

five [7] and/or other physico-chemical-based principles can

be used as filters, as well as pharmacophoric hypotheses.

LBVS can also be employed by taking some known ligands

as templates although the outcome may be devoid of

novelty because the resulting molecules tend to resemble

the original queries.

In order to overcome this drawback, we designed a new

protocol that combines SBVS and LBVS in a reverse order,

that is, fragment SBVS serves as a previous filter to LBVS.

This greatly reduces the computing time while maintaining

the chemical diversity that is contained in the original

library. For a given compound collection the new three-

step strategy performs the following tasks: (1) contracts the

database into a representative, non-redundant, set of frag-

ments that are used for docking against the target of

interest, (2) selects the three best-scoring fragments; and

(3) expands the structure of the fragments back into ligands

by employing the fragments as queries to search the data-

base using a fingerprints description and a similarity

criterion.

To test this new approach we first demonstrated that our

docking tool is able to reproduce the experimental poses

for a set of receptor-bound fragments in complexes of

known 3D structure. Next, we applied the three-step pro-

cedure to the ‘‘fragment-like subset’’ in the ZINC database

[6] using the 40 macromolecular targets contained in the

directory of useful decoys (DUD) [8] and our CGRID/

CDOCK docking tool [9]. The performance of the model

was assessed by means of the area under the curve (AUC)

of the generated receiver operating characteristics (ROC)

plots. Finally, a comparison was made between the

chemical space covered by the hits obtained from a stan-

dard VS protocol based on small-molecule docking and

that provided by the top-ranking docked fragments gener-

ated from these same molecules.

Methods

Fragment definition

A fragment is defined as a molecular entity endowed with

the following properties: (a) log P B 2.5, (b) molecular

weight B250 Da, and (c) \6 rotatable bonds.

Fragment docking

Thirty-four complexes [10] from the ASTEX diverse set

[11] in which the ligands fulfill the above fragment defi-

nition criteria were used as a test set. The fragments were

extracted from the complexes and converted to SMILES

[12] strings using OpenBABEL [13]. Then, our standard

docking workflow was followed:

1. For the ligands: (a) conversion from SMILES to 3D

MOL2 using CORINA [14], (b) atomic charge calcula-

tions with MOPAC [15] (AM1 ESP method) on every

single structure provided by CORINA; and c) atom type

assignment according to the AMBER force field [16] and

conformational analysis using ALFA [17]. The proton-

ation and tautomeric states for some of the ligands were

manually adjusted (Fig. S1, Supplementary Information).

2. The receptors, including those water molecules and metal

ions essential for ligand binding (Table S1, Supplemen-

tary Information), were prepared using pdb2pqr [18] and

adapted to the AMBER force field by using 250 steps of

steepest descent followed by 2,000 steps of Polak-Ribiere

conjugate gradient energy minimization.

3. Docking of ligands and fragments was performed with

our in-house CGRID/CDOCK tool: (a) definition of

the binding site as the space delimited by the axis-

parallel box containing the co-crystallized ligand,

augmented by 5 Å in each axis direction, (b) CGRID

calculation of protein interaction fields (a 12–6 Len-

nard–Jones term and an electrostatic term modeled

with a sigmoidal dielectric screening function) cover-

ing the binding site (0.5 Å spacing in all directions)

using common atom probes (C, N, O, S, P, H, F, Cl,

Br, and I), (d) exhaustive exploration by CDOCK of

the location and orientation of each fragment within

the binding site by positioning their centers of mass on

grid points and performing discrete rotations of 27� on

each axis, (e) energy evaluation of each pose by the

molecular mechanics force-field scoring function, as

implemented in CDOCK, and (f) selection of the best-

scoring pose for each fragment as the docking solution.

The standard criterion to validate the ability to predict

the native pose was the root-mean-square deviation (rmsd)

of the heavy atoms between the docking solution and the
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native conformation for each fragment. In molecular

docking, those poses within 2 Å from the experimental

structure are usually considered as correct solutions. In the

case of fragments, due to their reduced size, this cutoff is

customarily decreased to 1.5 Å. Each docking experiment

was run 20 times, and the reported rmsd corresponds to the

average value. The success rate was defined as the per-

centage of poses having an average rmsd below 1.5 Å.

Fragment screening

The fragments used here were those belonging to the

‘‘fragment-like subset’’ in the ZINC database. Due to dif-

ferent conversion problems, not all the SMILES codes were

able to produce the corresponding 3D structures, and for this

reason only 6,183 were employed out of the original 7,106

strings. As receptors, we used the 40 structures comprising

the DUD dataset (Table 1) and these were prepared for

docking as explained before for the ASTEX test set.

Initially, all the fragments were docked (SBVS) using

CGRID/CDOCK on each DUD target and only the best-

scoring pose for each one was retained. Then, the three

higher-ranking fragments for each target were selected and

converted to MACCS fingerprints [19]. The LBVS protocol

consisted of using these MACCS as queries to screen the

DUD sets of real binders and decoys using the Tanimoto

coefficient (Tc) index as the score. Performance is reported

as the AUCs corresponding to the best experiment out of

the three performed for each target (one for each of the

three best fragments/target). The ligand list retrieved from

each of these three fragments, at least in theory, should

belong to different regions of chemical space. Thus,

repeating the experiments 3 times is aimed at increasing

the chemical diversity of the results. Test calculations with

more than three fragments did not result in better coverage.

In a real-world situation the top-scoring compounds for

each of the three lists should be selected for testing, so as to

improve the likelihood of finding new hits.

Comparative test

Fifty-two thousand two hundred and thirty-one molecules

from an in-house chemical library that were ranked as pos-

sible hits in a standard SBVS campaign were decomposed

into fragments with our tailor-made program, based on the

chemistry development kit (CDK) [20], that makes use of the

exhaustive fragmentator tool to break all rotatable bonds and

generate fragments with at least 5 heavy atoms. A total of

1,137,482 fragments were thus extracted and then clustered

using the stochastic clustering algorithm that is implemented

in the SUBSET program [21]. MACCS fingerprints repre-

sented the fragments and a maximum Tc similarity index of

0.6 was used as a cutoff. This procedure, which is the same

that was used in the ZINC database to obtain the so-called

‘‘fragment-like subset’’, yielded 2,540 non-redundant frag-

ments. The new protocol then proceeded as follows:

1. Fragment docking and scoring with CGRID/CDOCK;

2. Selection of the best-scoring pose for each fragment

and of the three best-scoring fragments;

3. Comparison between the chemical spaces covered by

the fragments and by the parent compounds. The overlap

(O, Eq. 1) between both spaces was obtained by:

• an all-versus-all comparison between the 2,540

non-redundant fragments and the 52,231 parent

compounds, and calculation of the Tcs among them

as a control test;

• selecting the top 1% compounds from both proto-

cols and calculating the Tcs among them; and

finally,

• selecting the top 1% compounds from the standard

protocol and the three best-scoring fragments, and

calculating the Tcs among them.

O ¼ 1

mn

Xm

i¼1

Xn

j¼1

Tc ði; jÞ ð1Þ

where O, the overlap, is obtained as the averaged sum of

the Tcs; m is the total number of ligands (520 [1% of

52,231]) and n the total number of fragments (either 24

[1% of 2,540] or only 3), and i and j are indices. To per-

form these comparisons ligands and fragments were rep-

resented using chemically advanced template search

(CATS) descriptors [22].

Results and discussion

Fragment docking versus ligand docking

We first performed a ‘‘self-docking experiment’’ to test the

accuracy of our CGRID/CDOCK docking engine when

working with fragments. On average, for regular ligands

(Fig. 1a), CGRID/CDOCK was able to reproduce the pose

found in the X-ray crystal structure of the complex within an

rmsd of 2.0 Å with a success rate of 75–80% (unpublished

results). For fragments, and considering 1.5 Å as the cutoff

value, we obtained a success rate of 80% with an average rmsd

value of 0.88, in good consonance with recent studies [23, 24].

Fragment screening using ZINC fragments

and DUD targets

Next, we tested the contraction/selection/expansion approach

(Fig. 1b):
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(a) Contract the ligand library into a representative, non-

redundant set of fragments that are used for docking;

(b) select the three best-scoring fragments; and

(c) expand these fragments by searching the database for

ligands containing similar substructures.

For comparison purposes, SBVS was also carried out

with the original ligands (true binders ? decoys). Despite

the fact that the total number of ligands was less than the

number of fragments, the time and computational resources

required for this procedure were generally larger than in the

new fragment-based approach (see below). Overall, the

average AUC for the two protocols was very similar (*0.6,

Table 1) because, although the new method was superior

for 62% of the targets (26 out of 42), it proved inferior in a

few others. To analyze in more detail these differences in

performance the targets were grouped into families (Fig. 2).

This allowed us to see that the new methodology out-

performed the standard method when kinases and folate

Table 1 AUCs values corresponding to each individual target depending on the method used: FBP (the fragment-based protocol presented here)

and SP (standard ligand docking protocol)

Targeta FBPb SPc Targeta FBPb SPc

ACE 0.79 0.63 HIVRT 0.53 0.61

AChE 0.45 0.73 HMGR 0.11 0.57

ADA 0.60 0.65 HSP90 0.83 0.69

ALR2 0.57 0.57 INHA 0.57 0.40

AMPC 0.36 0.58 MR 0.82 0.78

AR 0.76 0.65 NA 0.77 0.75

CDK2 0.68 0.52 P38 0.75 0.50

COMT 0.71 0.87 PARP 0.69 0.65

COX1 0.24 0.53 PDE5 0.67 0.78

COX2 0.51 0.67 PDGFRB 0.58 0.24

DHFR 0.67 0.49 PNP 0.53 0.60

EGFR 0.77 0.52 PPARc 0.90 0.43

ERago 0.97 0.64 PR 0.76 0.49

ERantago 0.75 0.81 RXRa 0.96 0.92

FGFR1 0.63 0.31 SAHH 0.51 0.82

FXa 0.61 0.55 SRC 0.53 0.48

GART 0.70 0.55 Thr 0.60 0.67

GPB 0.69 0.83 TK 0.68 0.59

GR 0.78 0.61 Trypsin 0.63 0.66

HIVPR 0.28 0.33 VEGFR2 0.71 0.41

Averages

SP 0.60

FBd 0.54

FBe 0.64

The average values appear in the last three rows
a ACE angiotensin-converting enzyme, AChE acetylcholinesterase, ADA adenosine deaminase, ALR2 aldose reductase, AmpC, AmpC b-lac-

tamase, AR androgen receptor, CDK2 cyclin-dependent kinase 2, COMT catechol O-methyltransferase, COX-1 cyclooxygenase-1, COX-2,

cyclooxygenase-2, DHFR dihydrofolate reductase, EGFR epidermal growth factor receptor, ERago estrogen receptor (agonist-bound confor-

mation), ERantago estrogen receptor (antagonist-bound conformation), FGFR1 fibroblast growth factor receptor kinase, FXa factor Xa, GART
glycinamide ribonucleotide transformylase, GPb glycogen phosphorylase b, GR glucocorticoid receptor, HIVPR HIV protease, HIVRT HIV

reverse transcriptase, HMGR hydroxymethylglutaryl-CoA reductase, HSP90 human heat shock protein 90, INHA enoyl ACP reductase, MR
mineralocorticoid receptor, NA neuraminidase, P38 MAP P38 mitogen activated protein, PARP poly(ADP-ribose) polymerase, PDE5 phos-

phodiesterase 5, PDGFRB platelet derived growth factor receptor kinase, PNP purine nucleoside phosphorylase, PPARc peroxisome proliferator

activated receptor c, PR progesterone receptor, RXRa retinoic X receptor a, SAHH S-adenosyl-homocysteine hydrolase, SRC tyrosine kinase

SRC, Thr thrombin, TK thymidine kinase, VEGFR2 vascular endothelial growth factor receptor
b Fragment-based protocol presented in this paper
c Standard protocol
d The average was calculated with the original collection of fragments (not properly representing NHR binders’ fragments)
e The average was calculated with the appropriate fragments to represent NHR binders (see Fig. 4)
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enzymes were used as targets whereas true binders were

recovered at similar rates in metalloenzymes and serine

proteases. Strikingly, the worst performance for the new

method was observed in the case of nuclear hormone

receptors (NHR). When we analyzed the distribution of

similarity indices between the ZINC fragments and the true

52,231
compounds

docking
+

scoring

rank-ordered

b

c

a

small-molecule
chemical library

2,540
fragments

rank-ordered

2,540
fragments docking

+
scoring

compounds

rank-ordered

Fig. 1 Schematic

representation of the classical

ligand—based (a) and

fragment-based (b) SBVS

procedures and the novel

contraction/selection/expansion
approach (c). The blue double
arrowheaded lines stand for

comparisons of the results

between two given methods
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binders for these targets we realized that the latter were not

properly represented using the original fragment collection,

as illustrated in Fig. 3 for two prototypical targets of this

class: MR, and RXRa.

Upon inclusion of appropriate representative ad hoc

fragments (Fig. 4) we obtained AUC values of 0.82 and

0.96, respectively, for these two NHR that compared very

favorably to the previous 0.13 and 0.24 that were achieved

when these fragments were not included, and also to the

0.78 and 0.92 obtained with the standard protocol. In fact,

the overall performance for the whole NHR family

improved notably, as seen in Fig. 2 and also in Table 1,

which displays the results upon incorporation of these new

fragments. In view of this result, we tested the performance

of fragments specifically derived from ligands bound to

representative DUD targets (1/family) and found AUC

values (0.78 for HSP90, 0.68 for ACE, 0.73 for AChE, and

0.74 for fXa) similar to those reported in Table 1.

These findings highlight the fact that as long as the

fragment database is able to adequately represent the

chemical diversity of the true binders, the present method

can clearly outperform the standard classical SBVS pro-

cedure employing whole ligands. To better appreciate the

structural similarities between true binders and decoys

Fig. 5 shows the chemical structure of a query molecule

(at the center), three true binders retrieved with high Tcs

(at the bottom) and three decoys with low Tcs (at the top).

The true binders’s substructures that resemble the query

fragment are highlighted in blue.

A fragment-based approach displaying similarities with

our own has been published recently [25], although it

appears to be more focused on the optimization of query

molecules because the ligand database is decomposed into

fragments that are evaluated for binding affinity using

docking and scoring. Thereafter, those fragments exhibit-

ing the lowest affinities are replaced by new ones and the

affinity is re-calculated. The outcome is an optimized

ligand made up of the best fragments. A more elaborate

approach [26, 27] extends the query beyond the fragment

itself by considering its microenvironment, which includes

the relevant interacting protein residues. By compiling a

diverse set of micro-environments (e.g. from the PDB) it is

possible to optimize already known structures and/or sug-

gest novel and improved compounds.

Comparative test of chemical diversity

Finally, to test the extent to which the chemical space

represented by a set of docked compounds is covered by

their corresponding fragments once they have been docked

0.0 0.2 0.4 0.6 0.8 1.0

NHR

Kinases

Serine proteases

Metalloenzymes

Folate enzymes

Rest

Fig. 2 AUCs obtained for the targets grouped into families. NHR:

AR, ERago, ERantago, GR, MR, PPARc, PR, and RXRa; kinases:

CDK2, EGFR, FGFR1, HSP90, P38 MAP, PDGFRB, SRC, TK, and

VEGFR2; serine proteases: FXa, Thr, and trypsin; metalloenzymes:

ACE, ADA, COMT, and PDE5; folate enzymes: DHFR and GART;

and the rest: AChE, ALR2, AmpC, COX-1, COX-2, GPB, HIVPR,

HIVRT, HMGR, INHA, NA, PARP, PNP, and SAHH (for the

abbreviations see Table 1). Black and grey bars correspond to the

fragment-based protocol presented here and the standard SBVS

protocol with full ligands, respectively. An additional bar (light gray)

was included in the case of NHR targets to highlight the performance

of the new approach when the original collection of fragments was

used
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Fig. 3 Histograms showing the

distribution of similarity indices

between the ZINC fragments

and the ligands (true

binders ? decoys) for two NHR

targets (for the abbreviations see

Table 1), MR (a) and RXRa
(b), before (white bars) and

after (grey bars) incorporation

of the new fragments. Note that

for Tc values (x-axes) higher

than 0.5 the y-axes have been

scaled up to highlight that the

main differences occur in this

region
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into the same target, we took 52,231 molecules from an in-

house chemical library that had been subjected to SBVS

and ranked by docking scores. The all-versus-all compar-

ison between the 2,540 non-redundant fragments and the

52,231 parent compounds afforded a modest value (50%)

for the overlap (O). This percentage reflects that consid-

erable noise is introduced when the comparison is made

without a previous filtering step, that is, the overlap one

might expect when a brute force approach is employed.

This value, however, is increased to 72% when the top 1%

compounds from both rank-ordered lists are considered,

which suggests that a greater success can be achieved when

compound selection is made on the basis of a more robust

criterion such as the complementarity between the frag-

ments and the binding site, as represented here by the

docking step. Furthermore, when only the 3 best-scoring

fragments were selected for the comparison, an overlap of

82% was obtained. This indicates, again, that careful

Fig. 4 MR (a) and RXRa
(b) true binders and their

appropriate fragment

decomposition. These fragments

were not generated in the

default procedure that yielded

the original collection of

fragments

Fig. 5 Structural similarities

between a query molecule

(at the center), three true HSP90

binders (at the bottom), and

three decoys (at the top). The

true binders’ substructures

contained in the query are

highlighted in blue
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fragment selection is likely to result in rather successful

solutions that efficiently cover the chemical space explored

by a traditional SBVS protocol. Therefore we believe that

further improvements on this novel approach can be

expected by refining the fragment generation procedure

and by fine-tuning the similarity searches.

Benchmarking

Our in-house VS platform VSDMIP [28] was used for all

the calculations. The input is a SMILES string represen-

tation for each ligand or fragment. These SMILES are

inserted into the VSDMIP database by processing them as

outlined before (conversion to 3D, charges and radii

assignment, and conformational analysis). On average,

using either a 32-bit 3.2 GHz PIV or a 32-bit 3.06 GHz

Xeon processor, VSDMIP is able to insert into the database

2,600 fragments per CPU and day. This is roughly the same

number of ligands that can be typically processed. Taking

into account that fragments, by definition, are smaller in

size than ligands, the equivalence in these insertion times

reflects the structural complexity of the fragments. In fact,

they are not fragments in the strictest sense as they have not

been generated from splitting ligands into smaller pieces.

Rather, they are small ligands that fulfill the properties

arbitrarily defined for fragments. On the other hand, in

terms of docking, and due to their reduced size compared

to typical ligands, processing times are greatly shortened

(248 ligands vs. 553 fragments docked per CPU and day,

using the same CPUs as above). Finally, VSDMIP can

perform 2.4 9 109 comparisons/day and CPU using 2D

fingerprints. With all these numbers in hand, it can be

stated that they are affordable on almost any small- to

medium-size cluster (&25–100 processors) and would

allow users to perform several complete protocols (as the

one described here)/day. In this way, many tests can be

easily conducted, which increases the likelihood of

obtaining new promising hits.

Conclusions

We have presented a new way to combine SBVS and

LBVS strategies that consists of three steps: (1) organize

and reduce a ligand database into a non-redundant frag-

ment library (contraction step), (2) dock all of these frag-

ments into the binding pocket of the macromolecular target

and select the three best-scoring ones (selection step,

SBVS), and (3) perform a similarity analysis using the

selected fragments to interrogate the database and select

the most similar ligands (expansion step, LBVS). Com-

pared to a typical SBVS campaign, computer running times

are considerably reduced as a consequence of the fragments’

smaller size relative to typical ligands and their non-

redundancy. On the other hand, chemical space coverage is

not critically compromised. This protocol allows the user to

focus on specific regions within the chemical space present

in the ligand database by enabling: (1) more efficient VS

runs, (2) development of focused virtual libraries, and (3)

scaffold hopping for chemical modification. Provided that

the fragments have been previously obtained (e.g. using

CDK as mentioned above), all the operations can be per-

formed within the VSDMIP graphical environment, which

was implemented as a PyMOL plugin [28]. Finally, it

should be mentioned that the performance of the method is

expected to be highly dependent on the ligand database that

is employed to obtain the fragments: the greater the

diversity, the better the coverage of chemical space.
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