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Abstract A graphical user interface (GUI) for our pre-

viously published virtual screening (VS) and data man-

agement platform VSDMIP (Gil-Redondo et al. J Comput

Aided Mol Design, 23:171–184, 2009) that has been

developed as a plugin for the popular molecular visuali-

zation program PyMOL is presented. In addition, a ligand-

based VS module (LBVS) has been implemented that

complements the already existing structure-based VS

(SBVS) module and can be used in those cases where the

receptor’s 3D structure is not known or for pre-filtering

purposes. This updated version of VSDMIP is placed in the

context of similar available software and its LBVS and

SBVS capabilities are tested here on a reduced set of the

Directory of Useful Decoys database. Comparison of

results from both approaches confirms the trend found in

previous studies that LBVS outperforms SBVS. We also

show that by combining LBVS and SBVS, and using a

cluster of *100 modern processors, it is possible to per-

form complete VS studies of several million molecules in

less than a month. As the main processes in VSDMIP are

100% scalable, more powerful processors and larger clus-

ters would notably decrease this time span. The plugin is

distributed under an academic license upon request from

the authors.

Keywords Docking � Virtual screening � Drug design �
Graphical user interface

Introduction

Many changes in the drug discovery paradigm have

emerged in recent years due to major advances in the field

of Computer-Aided Drug Design (CADD), which has

benefited enormously from astounding improvements in

the power of computers and new algorithms. As a result,

attempts continue to be made to turn the drug discovery

process into a more rational approach that can help design

therapeutically relevant New Molecular Entities (NME)

with a minimum of synthetic effort. Another important

factor that has to be taken into the complex drug making

equation is the vast amount of experimental information

emanated from genome sequence and structural biology

projects, as well as biochemical and biophysical studies,

that is stored in publicly accessible databases. Precisely

because of this complexity, CADD appears to be placed, at

least conceptually, in an excellent position to help reduce

the cost and time that it takes to launch a NME onto the

market (a thousand million dollars and 15 years on aver-

age, respectively [1]). However, despite some signs of

promise, the real results still fall far below the expectations

[2].

CADD approaches include structure-based (SB) and

ligand-based (LB) virtual screening (VS) of chemical (and

fragment) libraries, and both methods are widely used in

industry and academia. SBVS uses docking tools with the

aim of identifying possible hits that can then be subjected

to lead optimization. To this end, they are routinely tested

for their capacity to (a) reproduce the experimental struc-

tures of a series of ligands bound to their receptor targets,
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Unidad de Bioinformática, Centro de Biologı́a Molecular Severo

Ochoa (CSIC-UAM), Campus UAM, c/Nicolás Cabrera 1,

28049 Madrid, Spain

e-mail: amorreale@cbm.uam.es

123

J Comput Aided Mol Des (2011) 25:813–824

DOI 10.1007/s10822-011-9465-6



as found in high-resolution X-ray crystal structures, and

(b) discriminate between true binders and fake ligands

(‘‘decoys’’) on the basis of a scoring function that, although

far from accurately representing the free energy of binding

that can be measured experimentally [3], is used to predict

the strength of the receptor-ligand association. If the

docking engine and the scoring function perform reason-

ably well in this respect, one can expect some success in

the identification and ranking of putative hits in a VS

experiment. As an alternative, and particularly in cases

where the receptor’s 3D structure is not available, it is also

possible to use the geometry of one or more ligands that

display affinity for this receptor as a query to try and fish

out similar molecules from commercially available cata-

logues or databases. The selected compounds can then be

tested experimentally for confirmation of affinity/activity.

Besides the core SBVS and LBVS algorithms, an inte-

grated platform for VS studies needs some other pieces of

software, the most important being those required for set-

ting up receptors and ligands at the beginning of the pro-

cedure and for processing the results at the end. In addition,

large databases are usually filtered according to some

custom-made rules. The integration of all of these tools

into a common, flexible, and user-friendly platform

requires a great deal of effort because a series of connec-

tors have to be developed to handle the existing variety of

file formats. Besides, an adequate database engine needs to

be used to store and process efficiently the massive

amounts of data that are generated, in common with trends

observed in other computational biology areas [4].

The growing interest in this type of computational plat-

forms that put together all the essential pieces to enable the

effortless execution of complex VS protocols has resulted in a

number of applications. Some solutions are commercial, like

the Schrödinger [5] and Sybyl [6] suites and Pipeline Pilot

from Accelrys [7, 8]), but open-source plugins for the popular

molecular graphics program PyMOL [9] have also been

designed and released, e.g. the intuitive and user-friendly

interfaces to widely used software such as AutoDock/Vina

[10] or AMBER [11]. Furthermore, other implementations are

accessible through a web server (DOCKBLAST [12]), dis-

tributed over a grid [13], or endowed with database capabili-

ties [14]. In our lab, VSDMIP [15] was developed to provide

the scientific community with a flexible, fully automated

computational platform to perform VS experiments and

manage every piece of data in an integrated fashion. Signifi-

cant advantages of this platform are its underlying database,

which stores ligand information and every result arising from

the different steps of a given VS protocol, and its modular and

pluggable architecture, which allows customization of each

step of the procedure. However, the original VSDMIP only

allowed SBVS to be done and worked through a command-

line interface.

In this paper we describe the improvements that have

been incorporated into the updated version (VSDMIP 1.5)

to overcome these shortcomings: (1) an LBVS module has

been built that can be used not only in cases where the

receptor’s 3D structure is unavailable but also as a com-

plement to SBVS applications, and (2) a graphical user

interface (GUI), written in Python programming language,

that allows its facile use as a plugin to the popular molecular

visualization program PyMOL. VSDMIP 1.5 is compared

to similar existing software and its LBVS performance on a

subset of the Directory of Useful Decoys (DUD) database

[16] is reported. As with the original VSDMIP, we are

committed to making this updated and more powerful

platform available free of charge to academic and non-profit

organizations so that the scientific community, and even-

tually society at large, can benefit from it.

VSDMIP extensions

LBVS: the newly added functionality

Molecular fingerprints

Molecular fingerprints are strings of bits denoting the pres-

ence (1) or absence (0) of certain types of molecular infor-

mation, typically chemical groups or relevant interaction

points. They can be 2D or 3D depending on the structural

information encoded. VSDMIP allows the user to work with

both 2D (MACCS [17], CATS [18], and chemical groups for

filtering) and 3D fingerprints (triplets of interaction points).

2D fingerprints The Molecular Design Ltd. (MDL)

Molecular ACCess System (MACCS) structural fingerprint

is a 166-bit string that indicates whether a predefined

substructure or functional group is present or not.

The Chemical Advanced Template Search (CATS) fin-

gerprint is composed of a bit for each possible combination

of hydrogen bond donor, hydrogen bond acceptor, posi-

tively charged group, negatively charged group, and lipo-

philic PharmacoPhoric Points (PPP), including aromatic

rings, separated by distances between 1 and 10 bonds and

totalling a length of 150 bits.

Finally, a group fingerprint is a 306-bit string that denotes

the presence or absence of different chemical fragments and

functional groups (see Open Babel documentation for details

[19]). The use of this fingerprint is indicated as a post-filter

after using MACCS or CATS to ensure that the selected

compounds do possess the required functional groups.

In the three cases, the fingerprints can be calculated

either from a given database or from a file containing a set

of Simplified Molecular Input Line Entry Specification

(SMILES) strings [20] using Open Babel [19], which is
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also integrated within VSDMIP. In the database the fin-

gerprints are stored in the FINGERPRINT table (Fig. 4).

Also, a previously saved file containing molecule IDs and

fingerprints can be loaded and stored within the database.

3D fingerprints 3D fingerprints can be defined using the

3D molecular structure and six types of PPP with the fol-

lowing interaction properties: hydrogen bond acceptor,

hydrogen bond donor, positively charged group, negatively

charged group, aromatic ring, and lipophilic point. These

PPP, associated in triplets, can be automatically calculated

for all the molecules in a given database. The generator of

triplets (GTP) code recognizes all possible PPP for each

conformer in the database and builds the triplets in hexa-

decimal strings representing the type and the relative dis-

position of the PPP. This information is stored in the

PHARMACOPHORES table (Fig. 4). Additionally, the user

can create customized 3D fingerprints by choosing the type

of points on the graphical interface and moving them to a

desired position. This fingerprint can then be used as a pat-

tern to search for molecules in databases that fulfil these

conditions. Finally, the molecules obtained from a search can

be incorporated directly into the main workflow of SBVS.

Fingerprint comparisons

VSDMIP incorporates three coefficients for fingerprint

comparison (Tanimoto, Tversky, and rule-based) as well as

two mechanisms to combine queries (hybrid fingerprints

and scoring fusion).

Tanimoto coefficient Given two objects, A and B, repre-

sented as two strings of bits, the Tanimoto coefficient, Tc,

is defined as the ratio (Eq. 1):

Tc ¼ c= aþ bþ cð Þ ð1Þ

where a is the count of on bits in object A but not in object

B, b is the count of on bits in object B but not in object A,

and c is the count of on bits in both objects A and B

It can be viewed as the ratio of on bits shared by both

string representations. The values range between 0 (no

similarity at all) and 1 (identical fingerprints).

Tversky coefficient It introduces the concept of a proto-

type to which the objects or variants are compared to and is

defined as the following ratio:

Tv ¼ c= a � aþ b � bþ cð Þ ð2Þ

where a, b, and c have the same meaning as before, and a
and ß are weighting factors for the prototype and the var-

iant so as to customize the relative importance of one

versus the other. The Tv coefficient is also bound between 0

and 1.

Rule-based coefficient This is a ratio calculated as the

result of the AND operation between the query string and

the comparing counterparts, and therefore takes into

account only those bits that are activated in the query string.

Mechanisms to combine queries: hybrid fingerprints

versus scoring fusion

When more than one query is at hand (i. e., several known

actives, to select some specific characteristics, or inactives,

to rule out other non-desired properties), two options are

available: (a) to combine the queries themselves, or (b) to

combine their individual results. For the former, VSDMIP

implements the centroids module, which analyses a set of

query compounds and generates a fingerprint that concen-

trates all the information present in the whole set. A bit is

activated if it is already present in a certain percentage of

the compounds (the cut off is 0.5 by default but can be

adjusted manually). Centroids can then be used like a

regular fingerprint to query the database. For the latter,

once multiple searches have been performed, common

fusion scoring schemes are employed over the individual

scoring values obtained: maximum, minimum, product,

average, and the sum of the scores. These schemes have

been implemented via a user-defined function (UDF), and

it should be possible to include new operations easily.

Finally, combined queries of active and inactive com-

pounds could be useful for detecting ambiguous molecules:

those giving good results when looking for actives and also

good results when looking for inactives.

VSDMIP graphical user interface

Considering the advantages, for non-expert users, of

incorporating a simple and easy-to-use interface to interact

with the VSDMIP platform, we decided to create a plugin

for the popular and versatile PyMOL graphics program as a

tool to control the complete VS workflow (either LBVS or

SBVS, or any combination thereof).

Once the plugin is invoked from the PyMOL plugin

interface, it displays a simple window with a menu bar

containing six submenus, the description of the program

and the version number (Fig. 1). The menu bar includes:

SBVS, LBVS, local operations (non-dependent on the

database facilities, Local), database information (Info),

configuration (Config) and information about the program,

the authors, and contact details (About).

Under the SBVS submenu available options are:

(a) Insert new molecules, to incorporate new SMILES

strings into the database,

(b) Run Virtual Screening, to create a new VS job and

submit it to a cluster or to a multiprocessor machine,
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(c) Get Results from Screening, to extract the results

from a previous screening (structures, energy values,

and general information about the interactions),

(d) Receptor preparation, to simplify the protein prepa-

ration workflow through a local script, and

(e) Set up Molecular Dynamics, to generate the topology

[top] and coordinates files [crd] that are necessary to

run a molecular dynamics simulation using the

AMBER suite (http://ambermd.org/) [21].

The procedure for the latter operation, which makes use of

AMBER’s antechamber module, involves the mandatory

creation of the ligand-related parameter and connectivity files

[frcmod] and [prepin], the immersion of the complex in a user-

adjustable cube of Transferable Intermolecular Potentials 3

Point (TIP3P) water molecules [22], and the addition of any

necessary counterions to achieve electroneutrality.

The LBVS submenu gives access to the novel options

for performing complete VS experiments using fingerprints

of different types:

(a) Generate 2D Fingerprints, calculation of 2D

fingerprints;

(b) Generate 3D Fingerprints, to generate triplets of PPP

using the automated tool runGTP;

(c) Insert 2D Fingerprints, to insert the generated finger-

prints into the database;

(d) Simple Search, to perform a single search using

simple parameters;

(e) Advanced Search, to use special techniques for

performing searches like scoring fusion, substructure

search or chemical group filtering; and

(f) 3D Pharmacophores, to generate, within the PyMOL

GUI, newly defined PPP to be used in new searches.

The Local submenu allows the user to carry out a complete

docking process, from the conformational analysis of the

ligand to the final visualization of the results. The available

options are:

(a) Options, to configure the paths of the different

programs;

(b) Ligand Set Up, to prepare the ligands for ALFA

calculations (conformational analysis) and atomic

charge assignment;

(c) CGRID, to calculate the energy grids for docking with

CDOCK;

(d) View grids, to visualize the grids;

(e) Grid processing, to post-process the interaction

energy grids by Boltzmann averaging (as a way to

include receptor flexibility for docking [23]) or by

calculating a grid as a difference of two other

previously calculated grids (for example, on two

related targets, as a way to explore selectivity [24]);

(f) CDOCK, to set up the docking process; and

(g) Docking Results Visualization, to analyse docking

results (different energy terms and the type of

interactions).

The Info submenu contains Show source of molecules and

Show VS catalogue, two windows in which the user can

look up information regarding the putative ligands and the

VS protocol, respectively, as they are stored within the

database (to be used later on as part of MySQL queries);

and Remote process, to monitor the processes for which

Fig. 1 VSDMIP’s main

window (centre) as it is

launched from PyMOL, and

windows that originate from the

tabs that give access to the

SBVS, LBVS, Local and Info

tasks
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instructions have been issued (the exact command is set up

in the Config submenu).

The Config submenu contains the Configure queues tab

that gives access to a window for defining the paths for the

ssh and scp protocols, remote system and commands, and

the MySQL settings.

Finally, the About submenu displays the name and

affiliation of the authors, a contact address for further

information, and the copyright statement.

Figure 2 illustrates the implementation of the VSDMIP

GUI in PyMOL and how results from a docking run with

CDOCK [25] can be visualized.

A case study

The test set: directory of useful decoys database

Eighteen targets (ACE, MR, HIVPR, P38 MAP, HMGA,

PNP, COMT, Thr, TK, fXa, AChE, HSP90, COX1, COX2,

AMPC, ALR2, GPB, and ERa) were selected from the DUD

database [16] ensuring enough diversity of types. Their

bound ligands were downloaded directly from the original

site and processed according to our established protocol. In

short: a) conversion of all compounds into their isomeric

SMILES [26] strings (to meet with the defaults in the

VSDMIP protocol as described in the original work) and

insertion into the database, which implies their transforma-

tion from 2D to 3D with CORINA [27], assignment of atom

point charges using the Austin Model 1 electrostatic poten-

tial (AM1/ESP) fitting method, as implemented in MOPAC 7

[28], addition of AMBER [21] atomic radii, and conforma-

tional analysis with ALFA [29]; and b) calculation of CATS,

MACCS and group fingerprints with a modified version of

the Open Babel program (decimal output and a parser for

CATS were added), and insertion in the extended database.

Importantly, this processing means that the original geom-

etry of the bound ligand is lost and that each molecule will be

present in the database as a collection of ready-to-dock

conformers. For the protein targets PDB2PQR [30] was used

to assign AMBER force field atomic radii and charges, while

the protonation states of titratable residues were decided on

the basis of pKa calculation carried out with the PROPKA

software [31]. The binding site to be explored was delimited

in each case by the location of the bound ligand in the X-ray

crystal structure using CGRID [25].

Virtual screening

In LBVS, we have used the searching functions described

above to query the database multiple times (as many as the

number of actives) and retrieve similar compounds taking

the Tanimoto coefficient as the score. The global perfor-

mance for a given target was evaluated as the mean (over

all its actives) of the area under the curve (AUC) values

from receiver operating characteristic (ROC) plots, as well

as the standard deviation of ligand atoms from their

experimentally determined location. Centroid calculations

Fig. 2 Screenshot showing the interface between PyMOL (left) and

VSDMIP (right). A CDOCK window displays the docking results for

aldosterone (blue sticks) in the ligand-binding site of the

mineralocorticoid receptor (green) compared to the X-ray crystal

structure (red sticks). The lower-right window lists the binding energy

values associated with each pose
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were also performed for each target. For fusion calcula-

tions, 3 randomly chosen actives were selected in each

round, and 3 rounds were performed for each target. Mean

values and standard deviations are also reported.

SBVS was performed by the combined use of CGRID

and CDOCK [25] as explained in the original VSDMIP

publication [15]. Briefly:

(a) for each protein structure, the initial binding site was

defined as the space delimited by the axis-parallel box

containing the co-crystallized ligand, augmented by

5 Å in each axis direction;

(b) CGRID calculation of protein interaction fields (a

12–6 Lennard-Jones term and an electrostatic term

modeled with a sigmoidal dielectric screening func-

tion) covering the binding site (0.5 Å spacing in all

directions) using common atom probes (C, N, O, S, P,

H, F, Cl, Br, and I);

(c) exhaustive exploration by CDOCK of the location and

orientation of each molecule within the binding site

by positioning their centers of mass on grid points and

performing discrete rotations of 27� on each axis;

(d) energy evaluation of each pose by the molecular

mechanics force-field scoring function implemented

in CDOCK that can additionally include ligand and

receptor desolvation energy terms as well as counting

of hydrogen bonding interactions; and

(e) selection of the best-scoring pose for each molecule

as the docking solution.

Finally, LBVS was employed prior to SBVS to illustrate

the connection between both modules and also to test its

ability as a filter to reduce docking times using ACE and

MR as the targets. To this end, MACCS fingerprints were

calculated for ACE and MR active ligands, and the

centroids method was used to combine all the information

for the actives into single queries that were employed to

search the entire DUD database of decoys and retrieve only

those with a Tc [ 0.6. The selected molecules were then

docked into their respective targets as explained above.

The results from LBVS and SBVS were evaluated using

ROC plots [32], which represent sensitivity (y-axis, true

positives rate, Eq. 3) versus specificity (x-axis, false posi-

tive rate, Eq. 4). AUCs were calculated for each ROC plot.

Sensitivity ¼ True Positives

True Positivesþ False Negatives
ð3Þ

Specificity ¼ True Negatives

True Negativesþ False Positives
: ð4Þ

Case study results: performance and timing

Using the eighteen targets selected from DUD we compared

the performance of LBVS (through topology-based

[MACCS] and mixed topological-physico-chemical-based

[CATS] fingerprints) and SBVS (using docking and phar-

macophore methods) as measured by the AUC values (see

Table 1). For MACCS the centroids and fusion approaches

were used to handle more than one initial query, whereas for

CATS only the centroid approach was employed for testing

purposes. In general, and considering the 18-target DUD

reduced set, MACCS afforded the best results in terms of

averaged AUC values (0.74 ± 0.17), followed by CATS

(0.64 ± 0.11) and docking (0.63 ± 0.13) when only one

query was used to search the database (only applicable to

MACCS and CATS). No significant changes were observed

in MACCS (0.72 ± 0.14) or in CATS (0.65 ± 0.10) when

different queries were considered via the centroids method.

A slight improvement was found for MACCS and the fusion

method (0.79 ± 0.19), although only 6 cases were studied.

Finally, the PPP method also performed reasonably well,

but since it was applied to only two cases no definite con-

clusions can be drawn. A more detailed analysis can be

done by splitting the AUC into three ranges: a lower-bound

range where the AUCs are B0.5 (worse than random),

0.5–0.7 (above random but with room for improvement),

and C0.7 (clearly better than random). On the one side,

clearly better than random, MACCS afforded 60–70% of

the targets with AUCs above 0.7, while these percentages

were 30–40% for CATS and 20% for CDOCK. On the other

side (worse than random) all the methods performed simi-

larly (6%) although some variability was obtained for

MACS depending on the number of starting queries (data

not shown). In the middle range (0.7 B AUC B 0.5),

CDOCK yielded the highest value (*70%), then CATS

(40–60%), and finally MACCS (20–40%).

As will be discussed below, analogue bias can cause

artificial enrichment because, if the query molecules are

topologically similar to the actives, these will be retrieved

more easily. To test this, we calculated similarity matrices

using Tc among the actives for each target, and some

examples are shown in Fig. 3 (HMGR, TK, COX1, and

ALR2).

The use of LBVS (in this case MACCS) as an initial

filter to a more computational demanding task such as

docking resulted in an important reduction in computer

time while maintaining the overall performance. For ACE,

the number of docking experiments that had to be done

after filtering out with LBVS was reduced from 1791 to

just 422, and this meant a reduction of 77% in computation

time. The AUC was 0.66, slightly above the value for

docking alone. Similar results were also found for the MR

target. In this case, a reduction of 74% in computing time

was achieved by reducing the number of ligands for

docking from 637 down to 163, while the AUC was

improved in 0.1 units.
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To assess the applicability of VSDMIP to large-scale VS

projects, based on ligands and/or receptors, we measured

the overall performance of VSDMIP when undertaking the

major tasks that are common to all the protocols such as

inserting the molecules into the database, generating fin-

gerprints, searching within the database, and docking

(Table 2).

According to the data compiled in Table 2, an average

of 370 and 275 molecules can be inserted and docked,

respectively, per day and CPU using VSDMIP. The num-

ber of inserted molecules showed a very high correlation

with the number of conformers per molecule (r2 = 0.98,

after exclusion of COMT due to the fact that the ligands for

this target are few and very small, and therefore unchar-

acteristic of the most typical real world scenario). The

correlation was more modest (r2 = 0.79) when the number

of heavy atoms, the number of conformations per mole-

cule, and the number of valid grid points were simulta-

neously considered. As expected, LBVS proved to be

several orders of magnitude faster than SBVS. In fact,

VSDMIP is able to generate around 107 2D- (molecules)

and 106 3D-fingerprints (conformers) per day and CPU. On

the other hand, 109 and 106 comparisons can be performed

using 2D- and 3D-fingerprints, respectively, per day and

CPU.

Technical issues

The PyMOL plugin

The VSDMIP plugin implements a visual interface to

manage the most common tasks in VS. The menu bar has

three main categories of actions: SBVS, LBVS and Local.

SBVS holds a visual interface for the original workflow

implemented in the first release of VSDMIP. It has been

extended to use results originating from its LBVS coun-

terpart and to perform docking on the receptor with the

selected molecules.

LBVS encompasses database-related operations (such as

filters and search tools) to perform similarity calculations

on 2D/3D fingerprints (codifications of several molecular

features) and does not require the 3D structure of a

receptor.

Table 1 AUC values for the two VS techniques (LBVS and SBVS) and the different methods according to each target studied

Target LBVS SBVS

MACCS CATS

Single FP Centroids Fusion (average) Single FP Centroids CDOCK PPP

ACE 0.73 (0.09) 0.78 0.79 (0.48) 0.61 (0.13) 0.56 0.63

MR 0.72 (0.22) 0.82 0.86 (0.03) 0.51 (0.09) 0.56 0.75 0.63

HIVPR 0.58 (0.13) 0.62 0.63 (0.12) 0.46 0.25

P38 MAP 0.72 (0.16) 0.87 0.81 (0.10) 0.53 (0.20) 0.73 0.50

HMGR 0.85 (0.22) 0.63 0.51 (0.46) 0.79 (0.09) 0.77 0.26

PNP 0.85 (0.06) 0.71 0.91 (0.04) 0.62 (0.09) 0.63 0.60

COMT 0.86 (0.13) 0.96 0.75 (0.21) 0.86 0.33 0.79

Thr 0.67 (0.15) 0.76 0.83 (0.11) 0.62 0.33

TK 0.88 (0.05) 0.70 0.81 (0.11) 0.61 0.60

fXa 0.77 (0.18) 0.61 0.88 (0.01) 0.83 (0.17) 0.60 0.55

AChE 0.63 (0.10) 0.59 0.51 (0.07) 0.55 0.73

HSP90 0.77 (0.62) 0.39 0.63 (0.06) 0.54 0.65

COX1 0.48 (0.16) 0.63 0.50 (0.04) 0.67 0.53

AMPC 0.90 (0.11) 0.70 0.72 (0.08) 0.66 0.47

ALR2 0.57 (0.08) 0.62 0.47 (0.11) 0.61 0.33

COX2 0.85 (0.41) 0.80 0.60 (0.13) 0.81 0.67

GPB 0.81 (0.14) 0.89 0.72 (0.12) 0.72 0.83

ERagonists 0.75 (0.12) 0.92 0.48 (0.05) 0.70 0.63

Numbers in parenthesis are the standard deviations

ACE angiotensin-converting enzyme, MR mineralocorticoid receptor, HIVPR HIV protease, P38 MAP P38 mitogen activated protein, HMGR
hydroxymethylglutaryl-CoA reductase, PNP purine nucleoside phosphorylase, COMT catechol O-methyltransferase, Thr thrombin, TK thymi-

dine kinase, fXa coagulation factor Xa, AChE acetylcholinesterase, HSP90 human heat shock protein 90, COX-1 cyclooxygenase-1, AMPC
AmpC b-lactamase, ALR2 aldose reductase, COX-2 cyclooxygenase-2, GPB glycogen phosphorylase c, ERagonists estrogen receptor (agonist-

bound conformation)
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Local allows the user to execute a complete docking job

on a local machine without extending the capabilities of the

basic programs (database-related functionalities). The

SBVS and LBVS modules are designed to work within a

cluster of processors or on a multiprocessor machine. The

main node on the cluster communicates with the other

calculation nodes through the secure shell (SSH) protocol

in a way that is completely transparent to the user.

LBVS techniques have been implemented that extend

currently available tools (Open Babel [33], MySQL, and

PyMOL) and new programs and interfaces have been

designed, e.g. the GTP code to enable the recognition of all

possible PPP (see above at the ‘‘3D fingerprints’’ section).

The MySQL Application Programming Interface (API)

was used to build User Defined Functions (UDF) in order

to hold the methods for comparing and scoring fingerprints,

including scoring fusion. The UDF are loaded directly into

the main memory whenever the database requires them so

that the filtering and searching processes are speeded up.

Extensions to VSDB

Three new tables have been added to the Virtual Screening

DataBase (VSDB) contained in the original VSDMIP:

FINGERPRINT, PHARMACOPHORE, and FINGER_

TYPE (see Fig. 4). The first and second tables contain 2D

and 3D fingerprints, respectively, whereas the third one

stores the information and description of the available

fingerprint types. The original role played by VSDB in the

previous version of VSDMIP (storing molecules and

results) has been expanded with filtering and searching

tools within the MySQL engine. To this end the MySQL

language was complemented with new functions that allow

advanced molecular screenings based on similarity calcu-

lations to be performed. Backward compatibility with the

original VSDMIP is maintained, as the plugin developed

here is an optional upgrade.

Operating system and software/hardware requirements

The client version of the platform is compatible with the

Linux and Windows operating systems. However, the

Fig. 3 Similarity matrices using Tanimoto coefficients for true

binders to four different targets. Note that the analogue bias effect

is clearly shown on HMGR and TK, while it is completely absent in

COX1 and ALR2

Table 2 Some ligand- and binding site-related properties of the complexes studied here and overall VSDMIP performance in the main

operations

Targeta hNHAib hConfic BSGPd Insertion Docking 2D 3D

SBVS ACE 23 118 18225 192 336 LBVS FP Generatione 9 9 106 1 9 106

COMT 16 35 7956 6600 288

PDE5 30 136 7182 192 168

AChE 26 133 7040 200 342 Search 2.4 9 109 0.5 9 106

PARP 20 16 4332 1080 288

Thr 32 136 2688 192 221

For structure-based VS (SBVS), the Insertion and Docking columns display the number of molecules that are processed per day and CPU (either

a PIV 32-bit 3.2 GHz or a Xeon 32-bit 3.06 GHz processor). For ligand-based VS (LBVS), the data shown are also molecules per day and the

same type of CPU
a ACE, COMT, AChE, and Thr have already been defined in Table 1. PDE5 phosphodiesterase 5, PARP poly(ADP-ribose) polymerase
b Average Number of Heavy Atoms in the ligand set for each target
c Average number of conformations in the ligand set for each target
d Binding Site Grid Points
e Fingerprints generation
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server modules are only available for Linux with the

OpenPBS/Torque queue system 2.x or above. In addition,

the VS modules require an MySQL database engine and

the client libraries installed on the system (mysql-server,

mysql?? [34], and libmysqlclient).

The GUI front end uses PyMOL software version 1.2

or higher and requires the mysql-python (version C 2.4)

and NumPy (version C 1.3) modules. It can be executed

on Windows and Linux operating systems. The back end

can be used in a wide variety of hardware architectures,

from single personal computers or laptops to a cluster of

processors or grid-like systems. The minimum recom-

mended amount of main memory per processor is 1 GB.

The database needs *45 GB of hard disk space to store

4 9 106 molecules together with their properties and

calculated conformers. In addition, *850 and *285 MB

more are needed to store information related to 2D or 3D

fingerprint types, respectively. Of note, all this informa-

tion is entered only once and can be reutilized in every

project. Finally, *750 MB of extra storage space would

be needed for the outcome of filtering/screening the

entire database.

VSDMIP in the context of existing VS platforms

When VSDMIP was originally released, a limited number of

similar platforms were available, namely Pipeline Pilot [7, 8]

from Accelrys, alternative implementations from Schrö-

dinger [5] and Tripos [6], and a proprietary web-based

platform from Astex Therapeutics [35]. Other non-com-

mercial solutions include the Data Management System for

Distributed Virtual Screening (DVSDMS) [14], the SOMA

workflow multiplatform [36], the KNIME modular envi-

ronment [37], and the public access web-based DOCK

Blaster platform [12]. On the other hand, the MoStBioDat

database [38] was designed to store and manipulate ligand

and receptor data and allows LBVS to be performed. A much

wider view of the drug design cycle in terms of the imple-

mented features is represented by OSIRIS [39] and PFAKT

[40]. The former is defined as a drug discovery informatics

system […] and contains a complete coverage of the drug

discovery process by custom tailored applications whereas

the latter is a suite of integrated services […] that facilitate

the medicinal chemistry design cycle […] and provides a

unified data analysis and collaboration environment.

Fig. 4 Entity-relationship scheme showing the database (VSDB) used by VSDMIP. The dark grey shaded region corresponds to the newly

added capabilities
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Some other applications have been launched with a

different goal in mind, namely the need to lower the

technical skill barriers so that a wider range of researchers

can benefit from them. Examples are BDT [41], DOVIS

[42, 43], VSDocker [44], AMMOS [45], iGEMDOCK [46],

VSM-G [13], and a PyMOL plugin for AutoDock/Vina

[10]. VSDMIP 1.5 represents an attempt to provide the

scientific community with a customizable and compre-

hensive VS platform that is managed from a friendly GUI

and also integrates an underlying database.

We believe, therefore, that the capabilities added to

VSDMIP (namely the GUI, the LBVS module, and the

interconnectivity between LBVS and SBVS modules)

place version 1.5 within the state-of-the-art automatic

platforms that perform VS experiments. Having all the

tools integrated in a single application facilitates

the complex task of building VS protocols and analyzing

the results (Fig. 5). Besides, VSDMIP 1.5 allows the user

to work with the programs individually (single docking and

grid visualization, database searches, analysis of interac-

tions, conformational analysis…) taking full advantage of

the easy-to-use PyMOL interface. From the technical point

of view, and although some computer skills are still

required to properly configure the application for high

performing computer architectures, the GUI and the con-

figuration files provided as a guide (plus the support given

by the development team) makes VSDMIP installation and

maintenance relatively straightforward. VSDMIP can also

be run on a desktop computer with or without the database

environment, employing all the available cores in a small

cluster, a user-defined number of them, or even just one.

VSDMIP has been fully tested on a Linux cluster using a

Linux- or Windows-running computer as the interface to

the cluster. Modularity (individual tasks can be connected

in different ways to allow the user to customize his/her VS

protocols) and flexibility (other software pieces can be

easily added to the platform and configured through user-

configurable extensible markup language [XML] files) are

still retained in this new version as they are considered the

main cornerstones that differentiate VSDMIP from other

VS platforms described to date. Detailed information

related to installation, configuration, possible extensions, as

well as examples, can be found within the User’s Guide at

http://ub.cbm.uam.es/software/vsdmip/doc/.

VSDMIP performance

The numerical results shown here for a reduced subset of

targets from the DUD database follow the trend com-

mented above [47], i.e., in general, LBVS (fingerprints)

outperforms SBVS (pharmacophores and docking). On the

other hand, our in-house CGRID/CDOCK docking tool

(hAUCi & 0.6) performs as well as DOCK, FlexX, ICM,

and PhDOCK, and slightly worse than GLIDE and Surflex

(hAUCi & 0.7), or eHiTS (hAUCi & 0.9) [48]. Thus,

there is clearly room for improvement. Although we found

these results reasonable, we are aware of the possible

analogue bias that might be introduced during the con-

struction of the DUD database, which leads to artificial

enrichments (see Table 1) in the case of LBVS methods

[49]. A key ingredient to achieve success in retrospective

VS experiments is to count with a well defined database

(actives ? decoys) of complexes with known 3D structures

and information about their activity. The term ‘‘well

defined’’ refers to the fact that a good VS method should

differentiate actives from decoys on the basis of interaction

features only. The molecular properties of the selected

decoys should resemble those of the active ligands and at

the same time, to avoid artificial enrichments, they should

Fig. 5 VSDMIP flowchart
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be structurally different. To comply with this requirement

the DUD database was created as a specific benchmark to

test docking methods, and has been widely accepted within

the docking and VS communities to the extent that it is

generally considered as the reference database. However,

some caveats have been pointed out [50], in particular

overfitting effects, its incomplete sampling of chemical

space, and its inadequacy to be applied to LBVS methods.

In relation to its applicability in LBVS, as reported here,

recent results have shown that the DUD decoy sets are

robust enough for LBVS [51]. Furthermore, it was found

that 2D fingerprints outperformed 3D shape-based

approaches as VS tools, in agreement with a previous study

where fingerprints, pharmacophores, and docking were

compared as VS engines [47]. This behavior might be

linked to the analogue bias effect, so called because

chemical diversity is not warranted in the DUD database

and many decoys share a reduced set of common scaffolds

resembling the actives. If by any chance one of the most

populated scaffolds is selected as the query, artificial

enrichment comes into play. Analogue bias is more prone

to occur with the use of fingerprints than with 3D methods

based on shape, pharmacophores or docking simply

because the former represent molecular similarity whereas

the latter involve chemical interactions. This observation

was confirmed by us in some of the targets. We calculated

similarity matrices among all the actives for each target

using the Tc (see Eq. 1), coloring them from blue (low

similarity, Tc = 0) to red (high similarity, Tc = 1).

Selected results are shown in Fig. 3. For HMGR and TK

the active sets are very similar (predominant red color in

both matrices) with MACCS AUCs * 0.8–0.9, CATS

AUCs * 0.8, and CDOCK AUCs * 0.6. On the other

hand, more difficult cases are represented by COX1 and

ALR2, where the active sets are highly dissimilar, as

shown by the prevailing blue color. In these cases, MACCS

and CATS AUCs drop to 0.5–0.6, while CDOCK AUCs

are less sensitive and only small variations are observed.

Benchmarking

With a medium-size cluster (&100 processors) and a

database of the order of several million compounds

(4 9 106 in VSDMIP), it would take 3.6 months to insert

all the molecules. Although this can be considered a very

long time, most of it is spent on calculating the point

charges, and we recall here that the molecules need to be

inserted only once and then can be reutilized as many times

as desired. Docking the complete database would take

around 5 months. Nevertheless, and given the high speed

obtained in LBVS, several of these runs can be easily

completed in an affordable time span before undertaking

more computationally intensive SBVS. LBVS would then

serve as a filter, leading to an important reduction in the

number of molecules to be docked, as shown above for the

ACE and MR targets, and as a result, to an important

optimization of the computer resources. By the time the

results presented here were collected, we acquired some

new Xeon Core2 64-bit 2.5 GHz processors, and pre-

liminary tests yielded a speed-up of 2.2-fold relative to the

old ones. Therefore, it should now be possible to insert

4 9 106 SMILES strings in less than 2 months, and dock

the entire database in 2.2 months using 100 processors of

this type. In view of these figures, and taking into account

the ever-increasing computer power and the fact that

docking (in the way it has been implemented in VSDMIP)

is 100% scalable (the more processors available, the less

time required to complete the tasks), we believe that

VSDMIP is a computational platform capable of per-

forming VS experiments in perfectly affordable time

schedules in an environment accessible to a large number

of researchers.

Conclusions

VSDMIP 1.5 allows an inexperienced user to execute both

SBVS and LBVS protocols, or any combination of the two,

by means of an easy-to-learn and friendly GUI imple-

mented in the commonly used PyMOL molecular graphics

program. We have tested its ability to conduct VS proto-

cols and compared the efficiency of different methods.

Good agreement with results from previous studies was

found but we also realized that the analogue bias effect in

the DUD database can lead to artificial enrichment for

LBVS. In terms of computer time, we show that VSDMIP

can indeed cope with the current demand of performing VS

experiments in weeks rather than in months. This version

of the platform is distributed to the scientific community

upon request from the authors as a bundled package

including the scripts and necessary SQL files to create the

database structure and the XML configuration files. The

programs implemented in the platform (except those that

need to be purchased for a modest prize, such as CORINA

or AMBER) are either free for academics (MOPAC,

DOCK, FRED, AutoDock) or will be released under a

scientific/academic non-profit and non-commercial license

as is the case for ALFA, CGRID, CDOCK, and ISM.
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