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Summary

Many heterocyclic amines (HCA) present in cooked food exert a genotoxic activity when they are metabolised
(N-oxidated) by the human cytochrome P450 1A2 (CYP1A2h). In order to rationalize the observed differences
in activity of this enzyme on a series of 12 HCA, 3D-QSAR methods were applied on the basis of models
of HCA–CYP1A2h complexes. The CYP1A2h enzyme model has been previously reported and was built by
homology modeling based on cytochrome P450 BM3. The complexes were automatically generated applying the
AUTODOCK software and refined using AMBER. A COMBINE analysis on the complexes identified the most
important enzyme–ligand interactions that account for the differences in activity within the series. A GRID/GOLPE
analysis was then performed on just the ligands, in the conformations and orientations found in the modeled com-
plexes. The results from both methods were concordant and confirmed the advantages of incorporating structural
information from series of ligand–receptor complexes into 3D-QSAR methodologies.

Introduction

The cytochromes P450 (CYP) group of monooxyge-
nases is a superfamily of enzymes present in both
prokaryotic and eukaryotic organisms, responsible for
the oxidative metabolism of many endogenous and ex-
ogenous compounds [1, 2]. CYP enzymes play a key
role in the metabolic transformations required for the
excretion of such compounds, but in some circum-
stances they participate in the bioactivation of some
compounds to toxins or carcinogens [3]. CYP1A2
is a member of the CYP1 family involved in the
metabolism of conjugated planar compounds, such
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as xanthines [4] and some antibacterial quinolones
[5]. CYP1A2 is also responsible for the bioactivation
of heterocyclic aromatic amines (HCA), formed dur-
ing the cooking of meat and meat-derived products,
to hydroxylamines that exhibit different degrees of
mutagenic activity [6, 7] (Table 1).

The absence of three-dimensional structures of
the enzyme, either free or complexed with the sub-
strates, hampers the rationalization of the observed
differences in activity among series of homologous
CYP1A2 substrates. The experimental determination
of 3D structures of mammalian cytochromes P450 has
proved to be complex because they are membrane-
bound proteins. However, some 3D models of mam-
malian cytochromes P450 [8–10], built by homology
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Table 1. Mutagenic heterocyclic amines

aBase-10 logarithm of mutagenicity estimated usingS. typhimuriumTA98 [7].
b Activation of procarcinogens in the presence of purified human CYP1A2 measured as the base-10 logarithm of umu gene expression [6].
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techniques from known 3D structures of prokaryotic
cytochromes P450 [11–14], have been published.

Recently, a model of CYP1A2h was built in our
group with the aim of improving our understanding of
this important enzyme [10]. In that work, the dock-
ing of some substrates was studied and the identity of
the most important residues for the enzyme–substrate
interaction was suggested. The present work attempts
to gain further insight by means of the automated
docking of a larger series of compounds into the bind-
ing site of CYP1A2h, and the subsequent analysis of
the quantitative relationships between the molecular
structures and the biological activities.

The free energy of interaction between a ligand
and its receptor provides a measure of the strength of
the association between the two molecules. Although
simple estimates of binding energies can sometimes
successfully correlate with experimental differences in
enzyme activity, as shown for a series of mutants of
the P450 2a4/2a5 system [15], more accurate theo-
retical estimations of binding free energies are often
necessary. For this purpose, thermodynamic integra-
tion and free energy perturbation calculations [16, 18]
or semi-empirical approaches based on linear response
theory [17] can yield absolute free energies of binding.
These methods, however, are still time-demanding and
beyond average computational resources.

3D-QSAR approaches are commonly viewed as
less costly and more convenient alternatives to the
calculation of free energy differences. Provided that
the compounds are similar enough, these methods can
supply reliable models relating the molecular differ-
ences within the series with the differences in biolog-
ical activity. In such cases, many of the terms that
are difficult to estimate in free energy studies cancel
out, because they take approximately the same val-
ues for all the compounds in the series. A 3D-QSAR
approach closely related to docking studies is the
COMBINE approach [19–22], which relies on the use
of a series of structures of ligand–receptor complexes
(modeled or experimentally determined) to quantify
interaction energies by molecular mechanics compu-
tations. Then, partitioning of each ligand–receptor
interaction energy into van der Waals and electrostatic
contributions per residue is followed by a partial least
squares (PLS) regression analysis in order to derive a
3D-QSAR model. The interpretation of this model can
help identify the residues that are more relevant for
the differences in activity and quantify their relative
importance.

On the basis of 3D distributions of interaction
energies between selected probes and the studied com-
pounds, 3D-QSAR models are being developed. Inter-
esting approaches are the one developed by Goodford
[23], CoMFA [24] or GRID/GOLPE [25, 26] methods.
In these, although the structure of the ligand–receptor
complexes is not strictly required, it is necessary
to define a relevant alignment for the ligands. In-
stead of computing the ligand–receptor interaction
energies, interaction energy fields are calculated on
a lattice of points around the ligands by means of
‘probes’ that represent chemical groups potentially
present on the receptor. The subsequent PLS analy-
sis, using the energy fields as descriptors and the
biological activity as the dependent variable, can high-
light the relative importance for activity of certain
types of interaction and certain regions around the
compounds. In the present study, both methodologies
(COMBINE and GRID/GOLPE) were applied to a se-
ries of HCA-CYP1A2h complexes. Application to the
same problem of these two independent methodolog-
ical approaches, one based on the structures of the
ligands alone and the other based on the structures
of the ligand–protein complexes, should enable us to
compare the performance of the two methods and to
increase the feasibility of the results.

Materials and methods

Biological activities of the heterocyclic amines

Table 1 shows the chemical structures and biological
activities of the HCA studied. These 12 CYP1A2h
substrates were chosen for our study because they are
frequently found in cooked foods [27, 28]. Directly
measured binding affinities of such amines for the
CYP1A2h are not available at present. In the absence
of a direct measure, HCA activation in the presence
of purified CYP1A2h would be a relevant index, but
unfortunately this index is only available for seven
of the compounds studied [6]. An alternative biolog-
ical index that is available for more compounds is
the mutagenicity of the metabolites expressed as re-
vertants/nmol inSalmonella typhimuriumTA98 [7].
The metabolic path driving the bioactivation of HCA
to mutagens involves two steps: HCA metabolism by
CYP1A2, and N-acetylation mostly undertaken by
the human arylamine-N-acetyltransferase isoenzyme
NAT2. Since the first process has been described as
the limiting step [30], a close correlation should exist
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between the susceptibility of a certain HCA to acti-
vation by CYP1A2h and its mutagenicity. Indeed, for
the seven amines with known values for both activities,
the correlation coefficient is r2 = 0.91 (Figure 1). The
linear relation between mutagenicity and CYP1A2 ac-
tivity is confirmed by experimental information on
PhiP, which has both low mutagenicity and low ac-
tivity [31] (this information is not included in Figure 1
because it originates from a different experiment).

HCA docking in human CYP1A2

In order to apply the COMBINE method to the series
under study, feasible 3D models of the amines docked
within the previously reported CYP1A2h structure
[10] had to be generated. With this aim, the docking
program AUTODOCK 2.4 [32] was used to perform
an automatic exploration of possible docking orienta-
tions for different conformations of the ligands. The
original force field parameters were used, with the ex-
ception of those defining the interaction of the nitrogen
atom of the exocyclic amino group of the HCA with
the iron of the heme group. For this pair of atoms
an equilibrium distance of 4.2 Å and a force constant
of 50 kcal Å−2 were used in order to force the lig-
ands to approximately keep the experimentally known
distance between the oxidation site and the iron atom
[33]. The AUTODOCK exploration was carried out
within a 30 Å cube, and a 0.5 Å grid spacing was
used. The simulated annealing protocol used in the
AUTODOCK simulations consisted of 20 runs of 50
cycles, each cycle including 25000 accepted or 25000
rejected relative positions. The annealing temperature,
RT, was set to 616 cal mol−1 during the first cycle,
and then linearly reduced at the end of each cycle,
following the protocol used by Morris et al. [32].
The clustering tolerance was set to a root-mean-square
(RMS) deviation of 1.5 Å. Ligands were considered
conformationally flexible by defining the torsional an-
gles about which rotation was allowed. From the set
of docking positions suggested by AUTODOCK, the
lowest energy conformations from the most populated
clusters were selected. In order to take into account
the conformational flexibility of the protein, the result-
ing ligand–enzyme complexes were refined using the
AMBER 4.1 program [34, 35], as explained below.

Solvation of the ligands in the binding site was
considered explicitly because water molecules are
known to play an important role in enzymatic catal-
ysis, as seen in hydrophilic P450 substrates like 6-
desoxyerythronolide B and phenylimidazoles [14, 36].

On the other hand, from available crystallographic
structures of bacterial P450 cam [11] it is known that,
in substrate-free structures, approximately six water
molecules are present in the active site. When a ligand
binds the active site of the enzyme, some or all of these
solvent molecules are displaced. Solvent molecules
remaining after the binding process can be justified
as filling empty space or helping ligands to establish
water-bridged hydrogen bonds. In the active site of
the crystal structure of the complex of P450 cam with
2-phenyl-imidazole two water molecules were found
[36]. One acts as the sixth ligand to the heme iron
whereas the other one is a well-defined solvent mole-
cule that participates in hydrogen bonds between the
heterocyclic nitrogen of 2-phenyl-imidazole and adja-
cent protein residues. In the present work the same
solvation scheme based on the electrostatic potential
distributions of the ligands, as described and applied
to MeIQ in our previous study [10], was extended to
the remaining 11 HCA.

AMBER calculations

In order to allow for force-field differences between
the present work and the receptor modeling work
[10] a mild relaxation of the docked complexes was
required. Otherwise, the ligand–enzyme interactions
could be affected by differences in van der Waals
radii, charges and force constants. In a first step, only
the hydrogen atoms of each complex were allowed to
reorientate. Then, the geometry of the ligand was op-
timized, as well as the water molecules present in the
binding site. The water molecules were restrained to
their positions by applying an harmonic force constant
of 5 kcal mol−1 Å−2 on the water oxygens. Finally, the
geometry of the whole complex was optimized, while
restraining the protein atoms to their original positions
by a force constant of 32 kcal mol−1 Å−2. Each of
the energy minimizations was carried out using the
steepest descent algorithm for 2000 steps or until the
RMS value of the potential energy gradient was lower
than 0.01 kcal mol−1 Å−1. A cut-off of 10 Å for
the non-bonded interactions and a distance-dependent
dielectric constant equal to 4r were used.

Atom centered charges for the ligands were de-
rived by projecting the quantum-mechanical molec-
ular electrostatic potential distributions, calculated at
the HF/6-31G∗∗ level of theory using GAUSSIAN 94
[37]. In order to obtain a maximum consistence with
the rest of the charges included in AMBER 4.1 (force
field parm91), the RESP program [38] was used. The
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Figure 1. Mutagenicity [7] versus human CYP1A2 activity [6].

rest of the parameters for the ligands were derived by
analogy from those already present in the AMBER
database. The parameters proposed by Bayly, and im-
plemented in AMBER 4.1, were used for the heme
group [34].

COMBINE analysis

The ligand–enzyme interaction energies of the refined
complexes were calculated and partitioned on a per-
residue basis using the ANAL module of the AMBER
software. Each solvated ligand or residue was re-
garded as a single fragment and no intramolecular
energy terms were considered. Some of the ligands
studied bind two molecules of water, whereas others
bind only one. Thus, we decided to incorporate into
the ligand only the water molecule that is present in
all the complexes. The fine-tuning hydrogen bonding
term present in the AMBER parameterization used
[35] was considered separately from the electrostatic
interaction because the compounds of the series have
potential hydrogen bond acceptor sites, which play an
important role in ligand orientation within the bind-
ing site. Since the 479 residues of CYP1A2 plus the
heme group were independently considered in the par-
titioning scheme, and three energy contributions (van
der Waals, electrostatic and hydrogen bonding) were

calculated for each residue, 1440 energy variables
(480× 3) were used to characterize each complex.

The resulting energy matrix was pre-treated by ze-
roing all the variables with absolute values lower than
0.05 kcal mol−1 and by removing those with a stan-
dard deviation below 0.05 kcal mol−1. In order to
equalize the importance of the blocks of variables the
Block Unscaled Weight (BUW) method was used, as
implemented in the GOLPE program [25]. Finally,
three consecutive fractional factorial design (FFD)
variable selections were performed over the matrix
obtained after pre-treatment. The optimal dimension-
ality of the PLS models was determined by monitoring
the cross-validation indexes as a function of the num-
ber of latent variables extracted. For cross-validation,
the compounds were assigned randomly to any of
five groups of approximately the same size, and the
whole procedure was repeated 20 times. The predic-
tive ability of the resulting models is reported by both
the cross-validated correlation coefficient (q2) and the
standard deviation of error of predictions (SDEP).

GRID/GOLPE analysis

Using a superimposition of the enzyme atoms as a
common frame of reference, the previously described
complexes provided the alignment of the HCA that
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was used in the GRID/GOLPE analysis. The molec-
ular interaction fields were calculated for each ligand
using a phenolic OH probe as implemented in the pro-
gram GRID [29]. This group is able to donate and
accept hydrogen bonds and it has an electronic envi-
ronment that corresponds to the interaction with theπ

system of a phenyl ring, resulting in a hydrogen bond-
ing pattern different from that of an aliphatic hydroxyl
probe. All GRID calculations were performed in a box
with dimensions equal to 14× 17 × 16 Å3 using a
grid spacing of 1 Å. The resulting 3808 probe–target
interactions for each compound were unfolded to pro-
duce a one-dimensional vector of variables for each
compound, which were assembled into the so-called X
matrix. This matrix was pre-treated by first using a cut-
off of +5 kcal mol−1 to produce a more symmetrical
distribution of energy values, then zeroing those val-
ues with absolute values smaller than 0.1 kcal mol−1,
and finally removing any variables with a standard
deviation below 0.1 Å. In addition, variables taking
only two or three values and presenting a skewed
distribution were also removed [25].

For the variable selection procedure, the Smart Re-
gion Definition (SRD/GOLPE) method [39] was used
defining a critical distance of 2.0 Å and a collapsing
cut-off of 27.2 Å.

Results and discussion

Docking simulations

Three representative examples of HCA in their com-
plexes with CYP1A2h (MeIQ, Trp-P-1 and PhIP) are
shown in Figures 2 to 4. These HCA have been chosen
because MeIQ is the most active compound, Trp-P-1
exhibits an intermediate activity and shows a particular
docking geometry, and PhIP is the only low-activity
compound that does not possess a fused tricyclic core.

The MeIQ complex (Figure 2) is stabilized by three
hydrogen bonds involving the two water molecules
considered in the simulation. One hydrogen is donated
from the exocyclic amine to the oxygen of the heme-
coordinated water. The heterocyclic nitrogen vicinal to
the exocyclic amine accepts a hydrogen bond from the
same water molecule, forming the second hydrogen
bond. The third hydrogen bond in the MeIQ complex
connects the pyridine-like nitrogen, which acts as a
hydrogen bond acceptor, with the second water mole-
cule, which in turn accepts another hydrogen bond
from the aliphatic hydroxyl group of Thr223.

Figure 2. Model of MeIQ (black) docked into the binding site of
CYP1A2h (gray). Important residues are shown as sticks.

Figure 3. Model of Trp-P-1 (black) docked into the binding site of
CYP1A2h (gray). Important residues are shown as sticks.
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Figure 4. Model of PhIP (black) docked into the binding site of
CYP1A2h (gray). Important residues are shown as sticks.

The Trp-P-1 complex (Figure 3) is also stabilized
by three hydrogen bonds, the first and the second being
the same as in the MeIQ complex, but the third one is
formed between the hydrogen of the nitrogen located
in the central pyrrole-like ring and the hydroxyl group
of Tyr495. Finally, in the PhIP complex (Figure 4)
only two hydrogen bonds were present. Instead of the
third hydrogen bond, a favorable but weaker aromatic-
aromatic interaction between the phenyl groups of the
substrate and Tyr495 was observed.

On the basis of their complexes with CYP1A2h,
the alignment used for the 12 HCAs was that shown
in Figure 5. It can be observed that the docking sim-
ulation and subsequent energy refinement protocols
yielded two clusters of orientations corresponding to
the more active (dark gray) and the less active (light
gray) HCA, respectively. The more active compounds
(MeIQ, IQ, 4,8-DiMeIQx, 7,8-DiMeIQx, MeIQx and
Glu-P-1) orientate their third ring towards a zone of
the active site that is unoccupied in five of the six
complexes with the less active compounds (Trp-P-
1, Trp-P-2, PhIP, AαC and MeAαC), and the planes
in which the heterocyclic systems of both kinds of
compounds are located appear slightly rotated. The
only exception of the mentioned clustering is Glu-P-2,
which adopts the orientation of the most active com-
pounds although it is a low-activity compound. The
results of the COMBINE and GRID/GOLPE analyses

should be expected to be influenced by these differ-
ent orientations of the more active and the less active
compounds.

COMBINE analysis

In order to assess the optimal number of latent vari-
ables (LV) to include in the PLS model, indexes of
the fitting (r2) and predictive power (q2) of the models
were plotted against the model dimensionality (Fig-
ure 6a). The maximum quality was obtained for a
model with three LV, but the slight improvement in
comparison to a model with only two LV and the small
sample size (n= 12) recommend the use of the model
with only two LV. This model includes 75 original
variables in the PLS model and exhibits a r2 = 0.90,
a q2 = 0.74 and a SDEP= 0.60. The activities cal-
culated by the COMBINE model (Figure 6b) were,
in general, quite similar to the experimental values,
with the exception of Glu-P-2 (Actexp = 3.27 and
Actpred = 4.58). This phenomenon is related to the
fact that the orientation obtained for this compound in
the active site was similar to the orientation of the most
active compounds, as mentioned above.

In a COMBINE model, the values of the weighted
PLS pseudo-coefficients (herein referred to as PLS
coefficients) for the different ligand–residue interac-
tions can be analyzed in order to know which are
the most relevant ligand–residue interactions [20, 21].
The signs of those coefficients express if favorable in-
teractions (negative energy values) correlate with an
increase (negative coefficient) or a decrease (positive
coefficient) in activity. Attention was focused on the
PLS coefficients with absolute values larger than 0.1.
The most important residues in terms of steric, elec-
trostatic or hydrogen bonding interactions are shown
in Table 2. These residues are located in four regions
(herein referred to as regions A, B, C and D) which
encompass the substrate recognition site proposed by
Gotoh [40] and the heme region.

Region A
This region is located in a homologous region that
comprises helix B′ and turn B′-C and also residues of
helix F. Because of the presence of gaps, these helices
are the most variable and problematic in sequence
alignments and modeling. From the comparison of the
four crystallized cytochromes P450, it is inferred that
the B′ helices and their immediate environments can
adopt completely different conformations. Therefore,
this zone may be highly influential on substrate speci-
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Figure 5. Stereoview of HCA superposition resulting from AUTODOCK 2.4 and AMBER refinement. The more active compounds (MeIQ,
IQ, 4,8-DiMeIQx, 7,8-DiMeIQx, MeIQx, and Glu-P-1) are shown in black, and the less active compounds (Glu-P-2, Trp-P-1, Trp-P-2, PhIP,
AαC, and MeAαC) are shown in gray.

Table 2. Main COMBINE PLS coefficients for CYP1A2h/HCA complexes

Region Residuea Location Stericb Electrostaticc H-bondd

A Thr115 Helix B′ 0.762 1.023 –

Asp119 Helix B′–C – 0.305 –

Thr124 Helix B′–C – 0.429 –

Thr223 Helix F – −0.377 –

B Asp313 Helix I – 0.313 –

Gly316 Helix I – – 0.638

Thr321 Helix I −0.504 0.504 –

Leu382 Near strandβ1−4 −0.631 – –

Pro383 Near strandβ1−4 – −0.203 –

C Tyr495 Near strandβ4−1 – −0.372 −0.901

D Arg456 Near heme – 0.638 –

aResidue of human CYP1A2 sequence.
bSteric field PLS coefficients.
cElectrostatic field PLS coefficients.
dHydrogen bond PLS coefficients.

ficity, but could also be a major source of modeling
errors. In contrast, the B′-C turn shows a reason-
able homology among cytochromes P450 and it is
structurally similar in all crystallized structures.

To a large extent, the coefficients in this region
arise from the different orientation of the third ring
for the more active and the less active compounds.
Different residues of this region make favorable con-
tacts with the third ring of the less active compounds
and therefore these interactions give rise to positive
PLS coefficients in the model (Asp119, Thr124, and
especially Thr115). Remarkably, the negative PLS co-
efficient for Thr223 corresponds to the water-bridged
interactions observed in the complexes of the most ac-
tive compounds, between polar groups present in the
ligands and residue Thr223.

Region B
This region is located in a zone that comprises he-
lix I and a loop between helix K andβ-strand 1-4.
The results of site-directed mutagenesis experiments
on residues Asp320 and Thr321 support the participa-
tion of these amino acids in catalysis, i.e. this region
is important for the enzymatic reaction [41–44]. Dur-
ing the catalysis process this distal helix experiences
a local distortion that leads to the loss of several he-
lical hydrogen bonds. The missing hydrogen bond to
the peptide carbonyl oxygen of Gly248 in P450cam
(Ala317 in CYP1A2) is replaced by a hydrogen bond
that is donated from the hydroxyl group of Thr252
(Thr321 in CYP1A2). Thr252 has been postulated
to be the direct proton donor, part of a proton shut-
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Figure 6. (a) Squared correlation coefficient (r2) and
cross-validated squared correlation coefficient (q2) versus
different dimensionalities of the COMBINE model. (b) Scatter plot
showing the calculated versus experimental activity values.

tle or part of the pocket that helps to stabilize the
oxy-complex [45].

Therefore it can be assumed that compounds that
place bulky groups in this zone may facilitate the
deformation of helix I, and as a consequence, acti-
vate the catalysis process. Coefficients given by the
model to residue Thr321 and also to the neighboring
Leu382 can be seen as an expression of this fact. The
most active compounds tend to place their third ring
in this region, i.e. all steric PLS coefficients in this
zone have negative coefficients. In contrast, less ac-
tive compounds place in this position a nitrogen able

to make electrostatic or hydrogen bond interactions
with residues in helix I (like Asp320 or Thr321), re-
sulting in a decrease of activity. Positive electrostatic
field coefficients at Thr321 can be taken as a measure
of repulsion with helix I. The less active compounds
AαC and MeAαC tend to make hydrogen bonding in-
teractions with Gly316, which the model reflects in the
positive hydrogen bond PLS coefficients.

Region C
This region comprises a loop between two antiparallel
β-strands. In this region, the electrostatic and hydro-
gen bonding interactions with Tyr495 display a signif-
icant negative PLS coefficient. This can be interpreted
as a consequence of the polar and hydrogen bond-
ing interactions observed between compounds with
intermediate activity (Trp-P-1 and Trp-P-2) and this
residue. For the more active compounds no interaction
was found in this region.

Region D
This region comprises the cationic residue Arg456 that
coordinates the propionate groups of the heme group.
The importance of this conserved arginine has been re-
ported recently [46]. It has been suggested that ligand
binding induces a conformational change in Arg456
that appears to be important for the change in the
oxidation state of the heme iron and, consequently,
for ligand oxidation. The positive coefficients given
to this residue can be seen as the consequence of
the slightly different orientations adopted by the more
active and the less active compounds near the heme
group, exerting different electrostatic effects.

As a summary of the COMBINE results, we can
assert that region A residues make better contacts
(energetically more negative) with the less active com-
pounds than with the more active compounds. Con-
tacts with Thr223 are an exception, and the more
active compounds are characterized by their ability
to make electrostatic interactions with this residue.
On the other hand, region B contains negative steric
PLS coefficients because residues in this region in-
teract better (more negative energy values) with the
more active compounds. Region C contains Tyr495,
a residue that modulates the activity of moderate ac-
tive compounds like Trp-P-1 and Trp-P-2, by forming
hydrogen bonds. Finally, region D modulates the ac-
tivity through electrostatic interactions involving the
charged residue Arg456.
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Table 3. Influence of the SRD selection procedure on the PLS
modeling results (GRID/GOLPE)

var. sel. ara dimensb r2c q2d SDEPe

Before SRD algorithm 1204 2 0.94 0.52 0.82

SRD+ 2 FFD 533 2 0.96 0.79 0.54

a Number of variables used in the PLS model.
b Dimensionality of the model.
c Squared correlation coefficient.
d Cross-validated squared correlation coefficient.
e Standard deviation of error of predictions.

GRID/GOLPE analysis

On the basis of the HCA alignment reported above a
GRID/GOLPE analysis was carried out on the same
set of compounds. Since both methods are quite dif-
ferent, concordant results can be seen as a further con-
firmation of the validity of the COMBINE analysis.
However, the different positions of the third ring and
the tilting of the molecular plane, which were shown
to discriminate between the more active compounds
and the less active ones (Figure 5), are expected to
affect also the GRID/GOLPE results, as they affected
the COMBINE analysis. Both methods should account
for the same underlying reality in different ways.

As was the case in the COMBINE analysis, the
optimal number of latent variables (LV) was chosen
by monitoring the changes in the fitting (r2) and pre-
dictive ability (q2) indexes of the model upon addition
of new LV (Figure 7a). The maximum quality was
obtained for a model with two LV. Table 3 shows the
characteristics of this model and stresses the advantage
of using the Smart Region Definition (SRD) algo-
rithm. In cross-validation, the predictive indices of the
resulting GRID/GOLPE model are slightly better than
those obtained in the COMBINE analysis (q2 = 0.79
vs. q2 = 0.74). The calculated activities given by the
GRID/GOLPE model (Figure 7b) are generally quite
similar to the experimental values, with the exception
of Glu-P-2, as was the case in the COMBINE analy-
sis. Figure 8 shows the four regions where the most
important GRID/GOLPE PLS coefficients are located.
Since they are located roughly in the same areas of
the binding site described in the COMBINE analysis,
these were also named regions A, B, C and D.

Region A
An important region of negative PLS coefficients is
located opposite the heme group in the binding site. As
seen in the COMBINE analysis, it can be interpreted

Figure 7. (a) Squared correlation coefficient (r2) and
cross-validated squared correlation coefficient (q2) versus
different dimensionalities of the GRID/GOLPE model. (b) Scatter
plot showing the calculated versus experimental activity values.

as reflecting the possibility of the ligand to make
water-bridged hydrogen bonds with Thr223. The PLS
coefficients from both methods account for the high
activities of MeIQ, IQ, 4,8-DiMeIQx, 7,8-DiMeIQx,
MeIQx and Glu-P-1 because they are able to form
the mentioned hydrogen bond, and therefore they give
rise to negative interaction energies or field values.
In contrast, less active compounds such as Trp-P-1,
Trp-P-2, AαC, MeAαC and PhIP place bulky groups
in this region, generating positive field values there.
Glu-P-2 behaves rather like an outlier: this compound
shares relative orientation, shape and electronic fea-
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Figure 8. Contour map of the PLS coefficients for the GRID/GOLPE model. Positive PLS coefficients (contour level 0.005) are colored yellow,
and negative PLS coefficients (contour level−0.005) are colored blue.

tures with the active compounds, with the exception
of a methyl group, but it is much less active. Since this
is a peculiarity of this compound, its behavior is not
correctly explained by either the COMBINE model or
the GRID/GOLPE model.

Region B
This second important region is located adjacent to
region A and near the catalytic center. In this case,
the positive coefficients indicate that the more active
compounds generate positive field values in this region
while the less active compounds tend to generate neg-
ative field values. It seems that energetically favorable
interactions in this zone have opposite effects on the
activity.

The PLS coefficients of this region affect the rank
of activity of the compounds. The most active com-
pounds MeIQ and IQ do not generate any negative
field in this region. In contrast, MeIQx, 4,8-DiMeIQx
and 7,8-DiMeIQx share an heterocyclic nitrogen that
generates negative fields in this region. Trp-P-1 and

Trp-P-2 place a methyl group in this region which
generates the relevant field in order to increase the
activities. The less active compounds, PhIP, AαC and
MeAαC, show negative fields in this region due to a
heterocyclic nitrogen (PhIP) or a polar hydrogen (AαC
and MeAαC).

Region C
This is another region showing high positive PLS
coefficients within the positions where the most ac-
tive compounds (MeIQ or 4,8-DiMeIQx) place their
methyl groups. Therefore, the presence of these bulky
groups in this position produces in the model an in-
crease of the activity. Besides, there is a small region
of negative PLS coefficients located near Tyr495 and
Thr115, mainly devoted to explaining the medium ac-
tivity of Trp-P-1 and Trp-P-2. These HCAs are not
able to form hydrogen bonds with the above men-
tioned water molecules but, due to hydrogen bonds
being formed with Tyr495, they are probably better
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orientated towards the heme group than other less
active compounds.

Region D
Finally, there is a small zone with negative coefficients
near the exocyclic amino group that account for the
small differences in the location of the amino group
and its orientation towards the heme group.

Comparison of COMBINE and GRID/GOLPE models

As was to be expected, there is a clear coincidence
of the results from the GRID/GOLPE method and
the COMBINE analysis. Figure 8 shows the residues
closest to the regions with the largest GRID/GOLPE
PLS coefficients, which correspond with the most im-
portant ligand–residue interactions disclosed in the
COMBINE model. Also, the predicted vs. experi-
mental activity plots exhibit the same pattern in both
the GRID/GOLPE and the COMBINE analyses (Fig-
ures 6b and 7b).

Since the models express to a large extent the dif-
ferent orientations of the ligands inside the binding
site, the GRID/GOLPE model uses mainly the pos-
itive part of the molecular interaction field. Most of
the coefficients represent the effect of the presence
or absence of a certain part of the ligand more than
the interaction of this part with the receptor. This
can be observed for regions B and C. The sign of
the steric PLS coefficients for region A (COMBINE:
positive and GRID/GOLPE: negative) reflects quite
well the presence of hydrogen bonds for the more
active compounds and also the trend of the less ac-
tive compounds to place bulky groups in this region.
In region B, the sign reversal of the steric PLS coef-
ficients in COMBINE (negative) and GRID/GOLPE
(positive) is brought about by the fact that the more
active compounds place hydrophobic or bulky groups
in the vicinity of the catalytic center.

With respect to region C, both methods identify the
surroundings of Tyr495 as the region responsible for
the increase in activity of MeIQ, 4,8-DiMeIQx, Trp-
P-1 and Trp-P-2, although the interpretation made by
both methods is different. The GRID/GOLPE method
simply displays positive PLS coefficients in this region
whereas COMBINE highlights the importance of the
hydrogen bond between Tyr495 and both Trp-P-1 and
Trp-P-2.

Finally, GRID/GOLPE identifies a common region
D near the heme group. Its positive PLS coefficients
can be seen as a consequence of the slightly different

locations of the amino group generating more nega-
tive fields for the more active compounds. COMBINE
goes one step further and identifies Arg456 as the
residue responsible for modulating the activity of the
HCA.

Conclusions

When using an appropriate alignment of the com-
pounds considered, both the COMBINE and GRID/
GOLPE methods offer concordant results that are use-
ful to quantitatively rationalize the differences in activ-
ity within the series. Furthermore, the combined use of
both approaches acts as a mutual validation procedure
and allows a more reliable and detailed interpretation
of the results.

The quality of the particular models reported here
is obviously limited by the quality of the CYPA2h
model and the suitability of the activity data. They
should be recomputed and reanalyzed when an exper-
imental structure of human CYP1A2 or more relevant
experimental activities become available. Likewise,
the role of the water molecules in the active site will
be of great interest for further studies. In any case,
we think that the models reported in this work can be
very useful for the study of regio- and stereospecificity
of cytochromes P450 and for the interpretation of the
increasing number of site-directed mutagenesis data.
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