
Comparative Binding Energy Analysis of the Substrate Specificity of Haloalkane
Dehalogenase fromXanthobacter autotrophicusGJ10†
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ABSTRACT: Comparative binding energy (COMBINE) analysis was conducted for 18 substrates of the
haloalkane dehalogenase fromXanthobacter autotrophicusGJ10 (DhlA): 1-chlorobutane, 1-chlorohexane,
dichloromethane, 1,2-dichloroethane, 1,2-dichloropropane, 2-chloroethanol, epichlorohydrine, 2-chloro-
acetonitrile, 2-chloroacetamide, and their brominated analogues. The purpose of the COMBINE analysis
was to identify the amino acid residues determining the substrate specificity of the haloalkane dehalogenase.
This knowledge is essential for the tailoring of this enzyme for biotechnological applications. Complexes
of the enzyme with these substrates were modeled and then refined by molecular mechanics energy
minimization. The intermolecular enzyme-substrate energy was decomposed into residue-wise van der
Waals and electrostatic contributions and complemented by surface area dependent and electrostatic
desolvation terms. Partial least-squares projection to latent structures analysis was then used to establish
relationships between the energy contributions and the experimental apparent dissociation constants. A
model containing van der Waals and electrostatic intermolecular interaction energy contributions calculated
using the AMBER force field explained 91% (73% cross-validated) of the quantitative variance in the
apparent dissociation constants. A model based on van der Waals intermolecular contributions from AMBER
and electrostatic interactions derived from the Poisson-Boltzmann equation explained 93% (74% cross-
validated) of the quantitative variance. COMBINE models predicted correctly the change in apparent
dissociation constants upon single-point mutation of DhlA for six enzyme-substrate complexes. The
amino acid residues contributing most significantly to the substrate specificity of DhlA were identified;
they include Asp124, Trp125, Phe164, Phe172, Trp175, Phe222, Pro223, and Leu263. These residues are
suitable targets for modification by site-directed mutagenesis.

Haloalkane dehalogenases are microbial enzymes that
catalyze dehalogenation reactions (1-3), which are important
for the degradation of environmental pollutants (4-6).
Halogenated aliphatic compounds are among the most
frequently occurring pollutants. Large quantities of these
compounds are widely used as pesticides, solvents, fire
retardants, hydraulic and heat transfer fluids, and cleaning
agents. They are environmentally dangerous and are hazard-
ous to humans due their toxic, genotoxic, teratogenic, and
irritating effects. Unfortunately, wild type enzymes often do
not acquire sufficiently high activity or specificity for
degradation of environmental pollutants. Protein design can
be used to improve the catalytic properties of such enzymes.
To tailor the enzyme for improved substrate specificity, the
amino acid residues that participate in substrate binding must

be identified so that they can be modified by site-directed
mutagenesis. Comparative binding energy (COMBINE)1

analysis has been shown to be a useful technique for deriving
quantitative structure-activity relationships from a set of
three-dimensional structures of enzyme-ligand complexes
(7-12). Here, we use COMBINE analysis to derive a
predictive model for substrate binding specificity in which
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1 Abbreviations: BUW, block unscaled weights; COMBINE, com-
parative binding energy; DhlA, haloalkane dehalogenase fromX.
autotrophicusGJ10;Eele

ES, enzyme-substrate electrostatic interaction
energy in the presence of the surrounding solvent derived from the
Poisson-Boltzmann equation;Edesolv-sur, surface area dependent term
of the desolvation energy;Edesolv

S, desolvation energy of a substrate;
Edesolv

E, desolvation energy of an enzyme; FFD, fractional factorial
design;∆Gele, overall electrostatic free energy change upon binding;
Gele

ES, electrostatic energy for all atoms in the enzyme-substrate
complex;Gele

S, electrostatic energy for substrate atoms;Gele
E, electro-

static energy for enzyme atoms;∆Gdesolv
S, change in desolvation energy

of the substrate upon binding;∆Gdesolv
E, change in desolvation energy

of the enzyme upon binding;∆Hvap, enthalpy of vaporization; INTCQ2,
intercept of the permutation plot forQ2; Km, enzyme-substrate
dissociation constant; PLS, partial least-squares;Q2, cross-validated
correlation coefficient;R2, correlation coefficient; SDEC, standard
deviation of error of calculation for the working or training set; SDEPint,
standard deviation of error of (internal) predictions; SDEPext, standard
deviation of error of (external) predictions; UV, scaling to unit variance;
∆U, total binding energy.
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important interactions for binding are highlighted so that the
model can be used to guide mutagenesis experiments to
modify the enzyme’s substrate specificity.

The haloalkane dehalogenase isolated from the soil
bacteriumXanthobacter autotrophicusGJ10 (DhlA) is a
soluble globular enzyme (13). DhlA is composed of 310
residues and has a molecular mass of∼36 kDa. It consists
of two different domains: theR/â-fold domain (main
domain) which is conserved for allR/â-hydrolases (14, 15)
and the so-called cap domain. The main domain is composed
of eight â-sheets surrounded by sixR-helices, whereas the
cap domain is composed of five additionalR-helices. The
active site of the enzyme is located between these two
domains in an internal, predominantly hydrophobic cavity
that can be reached from the solvent through a tunnel. The
catalytic residues form a catalytic triad (nucleophile, base,
and acid) that is highly conserved among all of theR/â-
hydrolases known to date. The mechanism of dehalogenation
is hydrolytic and requires the substrate and a water molecule
in the active site; no other cofactor is necessary. During the
hydrolytic dehalogenation, a carbon-halogen bond in the
substrate is cleaved and the corresponding alcohol is formed.
Details of the reaction mechanism have been investigated
by crystallography (16-18), kinetic measurements (19-23),
site-directed mutagenesis (24-31), and molecular modeling
(32-38).

Previous theoretical studies were focused on the reaction
mechanism of haloalkane dehalogenases (quantum mechan-
ical calculations) and their conformational behavior (molec-
ular dynamic simulations). The study presented here, on the
other hand, deals with the substrate specificity of DhlA, and
its aim is to construct a predictive model for estimation of
the binding affinities for mutant proteins. To this end, a
COMBINE analysis was carried out to identify the protein
residues responsible for the differences in binding affinities
of 18 chlorinated and brominated aliphatic substrates of
DhlA. The effects of different scaling and variable selection
procedures on the quality of the models were studied. The
best model explained 93% (74% cross-validated) of the
quantitative variance in binding constants and enabled
identification of the residues that contribute most to the
binding specificity; these are candidates for site-directed
mutagenesis aimed at altering the substrate specificity of
DhlA.

METHODS

Experimental Data. Apparent dissociation constants (Km)
were used as the measure of binding affinities for a set of
18 substrates. The binding affinities of these compounds vary
over 4 orders of magnitude. TheKm values determined by
Schanstra et al. (39) were logarithmically transformed (Table
1). Experimental activities were measured using steady-state
kinetic analysis with purified DhlA. TheKm values for
dichloromethane, 2-chloroethanol, and 2-chloroacetamide
were fixed at the highest measured concentrations since the
exact dissociation constants were not reported (39).

OVerView of COMBINE Analysis.Binding energies are
calculated for the set of enzyme-substrate complexes using
a molecular mechanics force field. The total binding energy,
∆U, may be assumed to be given by the sum of five terms:
(i) the sum of intermolecular interaction energies (∆ui)

between the substrate and each enzyme residue,Einter
ES, (ii)

the change in the intramolecular energy of the substrate upon
binding to the enzyme,∆ES, (iii) the change in the intramo-
lecular energy of the enzyme upon substrate binding,∆EE,
(iv) the desolvation energy of a substrate,Edesolv

S, and (v)
the desolvation energy of the enzyme,Edesolv

E.

The second and third terms, describing changes in in-
tramolecular energies upon binding, were neglected in the
study presented here because the DhlA substrates are rather
small molecules and there is no evidence for large differences
in the structure of DhlA when different substrates are bound.
Intermolecular energy contributions were decomposed into
van der Waals and electrostatic interactions.

In the first step of COMBINE analysis, a set of structures
of enzyme-substrate complexes is prepared and the total
binding energy is calculated for each of these complexes.
The following step is the decomposition of the enzyme-
substrate interaction energy on a per residue basis for each
of the complexes. A matrix is then constructed in which the
rows represent the different compounds studied and the
columns contain the residue-based energy information, which
is separated into two blocks (van der Waals and electrostatic),
plus an additional column containing the experimental
binding affinities. Further columns can contain additional
energy terms such as the substrate desolvation energy terms.
This matrix is then projected onto a small number of
orthogonal “latent variables” using partial least-squares (PLS)
analysis (40, 41), and the original energy terms are given
weights,wi, according to their importance in the model, in
the form of PLS pseudocoefficients. The higher these
coefficients are, the more significant they are for explaining
the variance in the experimental data. Thus, in the simplest
form, the COMBINE model for binding affinity,∆G, is of
the following form (C is a constant term):

Parametrization of Halogenated Substrates.The all-atom
AMBER molecular mechanics force field (42) was used
throughout, and consistent parameters for the haloalkanes
were derived to describe the bonded and nonbonded interac-
tions. For each molecule, molecular electrostatic potentials
(MEPs) were calculated from the corresponding ab initio
wave functions (RHF MP2//6-31G*) using Gaussian94 (43)

Table 1: Steady-State Dissociation Constants of Haloalkane
Dehalogenasea

compound
log Km

(mM) compound
log Km

(mM)

1 1-chlorobutane 0.34 10 1,2-dibromopropane 0.11
2 1-chlorohexane 0.15 11 2-chloroethanol 2.60
3 1-bromobutane -1.22 12 2-bromoethanol 1.04
4 1-bromohexane -0.52 13 epichlorohydrine 1.68
5 dichloromethane 2.00 14 epibromohydrine 0.34
6 1,2-dichloroethane -0.28 15 2-chloroacetonitrile 0.80
7 dibromomethane 0.3816 2-bromoacetonitrile -0.31
8 1,2-dibromoethane -2.00 17 2-chloroacetamide 2.00
9 1,2-dichloropropane 1.1118 2-bromoacetamide 1.30

a From ref39.

∆U ) Einter
ES + ∆ES + ∆EE + Edesolv

S + Edesolv
E (1)

∆G ) ∑wi∆ui + C (2)
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following full energy minimization. Partial atomic charges
were then derived by fitting each MEP to a monopole-
monopole expression using the RESP methodology (44, 45).
One conformation of each molecule (trans) was employed
in the fit, except for 1,2-dichoroethane for which both the
gauche and trans conformations were considered. Atom types
for carbon atoms in the haloalkanes (CT) were taken from
the AMBER database. Equilibrium bond lengths and angles
for chlorinated and brominated hydrocarbons were obtained
by averaging equivalent terms from the ab initio 6-31G(d)
energy-minimized structures (Table 1). Dihedral parameters
involving halogens were adjusted so as to reproduce in the
molecular mechanics force field the torsional barriers
calculated ab initio. For this purpose, the SPASMS module
in AMBER (46) was employed. Nonbonded parameters for
halogen atoms were developed and tested following a
previously reported procedure (47) with some modifications.
In brief, periodic cubic boxes (27 Å× 27 Å × 27 Å)
containing 149 solvent molecules of 1,2-dichloroethane,
bromoethane, and acetonitrile were constructed to reproduce
the density and enthalpy of vaporization (∆Hvap) of these
liquids at 300 K. The compressibility values (in 10-6 bar-1)
that were used were 84.6, 142.3, and 107.0, respectively (48).
Molecular dynamics simulations were carried out at 300 K
using the SANDER module in AMBER. Both the temper-
ature and the pressure were coupled to thermal and pressure
baths with relaxation times of 0.2 and 0.6 ps, respectively.
In a 20 ps heating phase, the temperature was gradually
increased under constant-volume conditions, and the veloci-
ties were reassigned at each new temperature according to a
Maxwell-Boltzmann distribution. This was followed by an
equilibration phase of 200 ps at 300 K, and by a 300 ps
sampling period at constant pressure during which system
coordinates were saved every 50 ps. All bonds involving
hydrogens were constrained to their equilibrium values by
means of the SHAKE algorithm (49), which allowed an
integration time step of 2 fs to be used. A nonbonded cutoff
of 10 Å was employed, and the lists of nonbonded pairs were
updated every 25 steps. Density values were provided directly
by the SANDER module.∆Hvap values were calculated
according to the equation

whereEinter is the interaction energy of the system, which
encompasses both the electrostatic and van der Waals
components obtained directly from the SANDER output,
divided by the number of molecules in each box.

Construction of Enzyme-Substrate Complexes and Energy
Analysis.The complexes were modeled with AMBER 5.0
(50) using the structure (16) of DhlA complexed with the
substrate 1,2-dichloroethane (DCE) (PDB entry 2DHC) as
a template. The WHATIF 5.0 program (51) was used for
adding the polar hydrogen atoms. His289 was singly pro-
tonated in theδ-position in accordance with its catalytic
function. Nonpolar hydrogen atoms were added using the
AMBER 5.0 graphic interface xLEaP. The substrates were
manually docked in the enzyme active site and aligned so
that the X-C1-C2 angle (where X is a halogen atom) of
each substrate could be superimposed on that of the DCE
molecule. These initial structures of the complexes were
refined using the molecular mechanics force field of Cornell

et al. (1994) implemented in AMBER 5.0. One hundred steps
of steepest descent were followed by conjugate gradient
energy minimization until the root-mean-square value of the
potential energy gradient was less than 0.1 kcal mol-1 Å-1.
A nonbonded cutoff of 10.0 Å and a distance-dependent
dielectric constant (ε ) 4rij) were used. The ANAL module
of AMBER 5.0 was used for energy decomposition of the
refined complexes.

Estimation of Surface DesolVation Energy. The surface
desolvation energy (Edesolv-sur) of a substrate was calculated
as a sum of atomic surface accessibilities multiplied by
hydrophobicity coefficients for specific atom types. Atomic
surface accessibility was calculated using the NACCESS
2.1.1 program (52). This program is an implementation of
the method of Lee and Richards. Appropriate hydrophobicity
coefficients were taken from the literature (53, 54) as
follows: carbon-containing group, 18; neutral oxygen or
nitrogen,-9; sulfur,-5; charged nitrogen,-38; and charged
oxygen,-37. In this context, we assigned a value of 1 to
the hydrophobicity coefficient of halogen atoms.

Estimation of the Electrostatic Contributions to the Free
Energies of Binding. Continuum Electrostatics Calculations.
The overall electrostatic free energy change upon binding
(∆Gele) can be calculated from the total electrostatic energy
of the system by running three consecutive calculations on
the same grid (55, 56): one for all the atoms in the complex
(Gele

ES), one for the substrate atoms alone (Gele
S), and a third

one for the enzyme atoms alone (Gele
E). Since the grid

definition is the same in the three calculations, the grid
energy artifact cancels out when the electrostatic contribution
to the binding free energy is expressed as the difference in
energy between the bound and the unbound molecule:

An alternative method, which allows partitioning at the
residue level, considers a different description of the binding
process. This consists of first desolvating the apposing
surfaces of both the substrate and enzyme and then letting
the charges of the two molecules interact. It is then possible
to separate the change in electrostatic free energy on
molecular association (∆Gele) into three components (55-
57): (i) the enzyme-substrate interaction energy in the
presence of the surrounding solvent (Eele

ES), (ii) the change
in desolvation energy of the substrate upon binding (∆Gde-

solvS), and (iii) the change in desolvation energy of the enzyme
upon binding (∆Gdesolv

E):

This decomposition is exact, contains all cross terms, and
can be profitably used in COMBINE analysis. The first term
in eq 5, that is, the electrostatic energy of interaction between
the group ofE atoms in the enzyme and the group ofSatoms
in the substrate, can be described (in kilocalories per mole)
by

whereq represents the atomic point charges of theith atom
of the enzyme andφi is the electrostatic potential at theith

∆Hvap ) RT- Einter (3)

∆Gele ) Gele
ES - (Gele

S + Gele
E) (4)

∆Gele ) Eele
ES + (∆Gdesolv

S + ∆Gdesolv
E) (5)

Eele
ES ) ∑

i)1

E

qiφi (6)
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atom of the enzyme created by theSatoms of the substrate.
Equation 6 can be recast in the form of a sum ofN residue-
based contributions (eN), whereN is the number of residues
in the enzyme, each of these containingK atoms:

This allows the total electrostatic free energy of substrate
binding to be expressed as a sum of residue-based contribu-
tions plus two additional terms corresponding to the elec-
trostatic components of the desolvation free energy of both
the substrate and the enzyme:

The electrostatic potentials used in eqs 6 and 7 can be
calculated either as

where ε is the relative permittivity of the homogeneous
dielectric medium andrij is the separation between every
pair of atoms (as in the molecular mechanics force field) or
to include the potential created by the response of the
surrounding solvent to the substrate charges, by solving the
linear form of the Poisson-Boltzmann equation:

where F is the fixed solute charge distribution,κ is the
modified Debye-Hückel constant that accounts for a Boltz-
mann distribution of the ions in solution, andε(rb) andφ(rb)
are the dielectric constant and the electrostatic potential,
respectively, as a function of position. The solvent-corrected
potential calculated with eq 10 can be either that generated
by the charges on the enzyme at the positions of the
uncharged substrate atoms or, alternatively, that created by
the charges on the substrate at the location of each of the
uncharged atoms of the enzyme. It is the latter that we have
computed for the purpose of calculating the residue-based
contributions toEele

ES described in eq 7. Thus, the only effect
that is missed by this approach is the solvent polarization
created by the enzyme charges and its corresponding cross
terms. However, the consequence of ignoring this effect is
almost negligible when the complexes of a common receptor
with a series of congeneric substrates are considered, as is
demonstrated below by the similarEele

ES values computed
with eqs 4 and 8.

The latter two terms of eqs 5 and 8, corresponding to the
differences in electrostatic free energies of desolvation of
the substrate and enzyme upon complex formation, were
calculated by considering the effects on the respective
electrostatic free energies of replacing the high-dielectric
medium of the solvent with the low-dielectric medium of
the other molecule in those regions that are occupied by the
binding partner in the complex.

Each of the components of eq 8, which describes the
electrostatic effects of substrate binding, enters the energy
matrix for COMBINE analysis as a different variable. From

the previous derivation, and as demonstrated below in the
Results, it is clear that the total electrostatic binding free
energy is partitioned taking into account the cross terms in
the reaction field and no double counting is done; i.e., the
sum of electrostatic terms in the energy matrix yields the
electrostatic free energy of binding for that particular
compound. This is an important feature that allows easier
interpretation of the regression models, avoiding convoluted
effects in the energetic description of the variables. It is also
worth noting that the formalism that is presented creates an
electrostatic block with variance similar to that of the van
der Waals block, making the direct use of PLS analysis
possible without invocation of scaling procedures, which may
produce spurious results in three-dimensional QSAR (8).

The Poisson-Boltzmann equation was solved using a
finite difference method, as implemented in the DelPhi (57)
module of Insight II. The atomic coordinates that were
employed were those of the AMBER-optimized complexes.
The interior of the enzyme, the substrates, and the complexes
were considered a low-dielectric medium (ε ) 4), whereas
the surrounding solvent was treated as a high-dielectric
medium (ε ) 80) with an ionic strength of 0.145 M. Cubic
grids with a resolution of 0.5 Å were centered on the
molecular systems that were considered, and the charges were
distributed onto the grid points (55, 56). Solvent-accessible
surfaces (58), calculated with a spherical probe with a 1.4
Å radius (59), defined the solute boundaries, and a minimum
separation of 10 Å was left between any solute atom and
the borders of the box. The potentials at the grid points
delimiting the box were calculated analytically by treating
each atom with a partial atomic charge as a Debye-Hückel
sphere (55, 56).

Chemometric Analysis.The program Q2 4.5.11 (Multi-
variate Infometric Analysis) was employed for data pretreat-
ment, building of a model, and selection of variables by
fractional factorial design (FFD) (60). The program SIM-
CA-P 8.0 (Umetri, Sweden) was used for permutation
validation (61). The quality of models is described by the
correlation coefficient (R2), the cross-validated correlation
coefficient (Q2), the standard deviation of error of calcula-
tions (SDEC), the standard deviation of error of predictions
(SDEPint and SDEPext), and the intercept of the permutation
plot for Q2 (INTCQ2). R2 and SDEC are the descriptors of
the quality of the fit and are given by eqs 11 and 12,
respectively.

R2 takes values up to a maximum of 1, corresponding to a
perfect fit. A value higher than 0.5 is generally considered
statistically significant.Q2 characterizes the predictive ability
of a model and was computed using the Leave One Out/
Leave Some Out cross-validation according to eq 13.

Eele
ES ) ∑

n)1

N

∑
k)1

K

qnkφnk ) ∑
n)1

N

en (7)

∆Gele ) ∑
n)1

N

en + ∆Gdesolv
S + ∆Gdesolv

E (8)

φi ) 332∑
j)1

L qj

erij

(9)

∇[ε( rb)∇φ( rb)] ) -4πF( rb) + κj2
φ( rb) (10)

R2 ) 1 -

∑
i

(yicalc - yiobs)
2

∑
i

(yiobs- yimean)
2

(11)

SDEC) [∑
i

(yicalc - yiobs)
2

N ]1/2

(12)
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A value higher than 0.4 is generally considered statistically
significant. SDEPint and SDEPext quantify the error in
prediction for test and validation sets, respectively, and are
standard deviations computed in a manner analogous to that
of SDEC.

INTCQ2 is a measure of the backgroundQ2 obtained by
model fitting with a randomizedy variable (30 permutations
with random seed). TheX variable matrix contained 622
columns (620 energy contributions for 310 amino acid
residues and two energy contributions for the catalytic water
molecule) and 18 rows (enzyme-substrate complexes). The
dependenty variable was represented by 18 logarithmic
values of experimental binding constantsKm. Three different
data pretreatment methods were applied to the energy
interaction matrix during the PLS analysis: centering only
(no scaling), block unscaled weights (BUW), and scaling to
unit variance (UV). A sum of squares higher than 10-7 was
the pretreatment threshold that was used forX variables to
be considered active. This threshold served for elimination
of variables with low-magnitude energies and variance.
External validation was performed by splitting the data set
of the complexes into two subsets. The compounds were
ordered according to logKm values and split into odd and
even values to obtain homogeneous data sets. One of them
served as a test set (compounds2, 4, 6, 8, 9, 13-15, and
17), while the other was used as a training and validation
set (1, 3, 5, 7, 10-12, 16, and18).

RESULTS

Parametrization of the Haloalkanes.The nonbonded
parameters used in this work for the Cl and Br atoms and
the cyano group present in the haloalkanes that were studied
were derived from condensed phase molecular dynamics
simulations of three relevant organic solvents. The good
agreement found between the calculated and experimentally
measured densities and enthalpies of vaporization (Figure
1) lends credence to the validity of these parameters. The
derived parameters are provided in the Supporting Informa-
tion.

Construction of COMBINE Models.The set of 18 enzyme-
substrate complexes was modeled, and each complex was
energy-minimized. The positions of the substrates inside the
active site after energy minimization are shown in Figure 2.
Different types of models were built using several scaling
methods. TheQ2 value was used as the criterion to determine
the optimal dimensionality of the PLS models. The FFD
variable selection procedure was then applied to all models
using two different techniques (retaining uncertain variables
and not retaining uncertain variables). The complete set of
PLS models with their statistical parameters is listed in Table
2.

Effect of Scaling on the PredictiVe Ability. The unscaled
models have statistical criteria similar to those of the BUW-
scaled models (Table 2). The autoscaled models have higher
R2 values but significantly lowerQ2 values, which is
indicative of overfit. External validation was employed for

testing the predictive power of the models (Table 3). External
validation of the models without scaling and the BUW-scaled
models produces similar statistics. The autoscaled models
unequivocally provide the best SDEP values. This result,
however, does not seem consistent with the fact that
autoscaled models have lowerQ2 values and is presumably
a chance effect. Indeed,y-value permutation tests indicated
the presence of chance correlation in the autoscaled models.
The chance correlation is also apparent from Table 4. Many
of the best scoring energy contributions in the autoscaled
models are not provided by the residues lining the active
site, and some of them are provided by residues on the
protein surface.

Effect of Variable Selection on the PredictiVe Ability.Two
types of FFD variable selection procedures were performed.
FFD resulted in higherQ2 values, indicating improved
internal predictive ability of the models (Table 2), but at the
same time resulted in lowerR2 values, suggesting that some
of the variables that are important for explainingKm were
excluded from the data set. The 24 variables retained in
model 3 and the 23 variables in model 6 were sufficient for
explaining 87% of the variance (77% cross-validated) in the
Km values. External validation, however, confirmed the

Q2 ) 1 -

∑
i

(yipred- yiobs)
2

∑
i

(yiobs- yimean)
2

(13)

FIGURE 1: (A) Time evolution of the calculated density (grams
per cubic centimeter) during the molecular dynamics simulations
of the solvent boxes: bromoethane (0, exptl, 1.460), 1,2-dichlo-
roethane (4, exptl, 1.235), and acetonitrile (b, exptl, 0.786). (B)
Time evolution of the calculated enthalpy of vaporization (∆Hvap,
kilocalories per mole) during the molecular dynamics simulations
of the solvent boxes: bromoethane (0, exptl, 6.72), 1,2-dichloro-
ethane (4, exptl, 8.43), and acetonitrile (b, exptl, 7.94). The
experimental values are displayed as horizontal dashed lines.
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greater robustness of the models derived without variable
selection (Table 3).

Effect of Surface DesolVation Energy on the PredictiVe
Ability. Inclusion of the surface desolvation energy term
(Edesolv-sur) does not significantly improve the predictive
ability of the models (models 10-18) in comparison to the
ability of models without this term (models 1-9). Statistical
criteria for the models with and without surface desolvation
terms are very similar (Table 2). The variableEdesolv-sur

showed low weighted regression coefficients and was
eliminated from the models that employed variable selection.
Addition of Edesolv-sur did, however, have a large influence
on the number of variables retained after FFD variable
selection.

Effect of Continuum Electrostatic Energy Terms on the
PredictiVe Ability. Replacement of AMBER electrostatic
interactions with the enzyme-substrate interactions calcu-
lated by numerically solving the linearized Poisson-Boltz-
mann equation slightly improved bothR2 and Q2 (models
37-42; compare with models 1-6). Only the unscaled and
BUW-scaled models were taken into account in these
comparisons since the chance correlation was detected earlier
in the autoscaled models. When the electrostatic term
calculated using AMBER was replaced with the overall
electrostatic energy change upon binding calculated with
DelPhi (∆Gele), a new set of global interaction energies was
obtained. The residue-based electrostatic interaction energies
computed with DelPhi, as depicted in eq 7, were used to

replace the corresponding AMBER values in the COMBINE
energy matrix. To account for the change in the electrostatic
energy of desolvation of the substrate and the enzyme binding
site upon complex formation, two new variables,∆Gdesolv

E

and∆Gdesolv
S, were incorporated in the analysis as additional

terms. Addition of∆Gdesolv
E and∆Gdesolv

S into models with
both AMBER electrostatic and van der Waals interactions
did not lead to statistically better models (models 19-27).
The replacement of AMBER electrostatic interactions with
∆Gdesolv

E and∆Gdesolv
S terms led to models with improved

predictive ability (models 28-33). Addition of these two
terms to models with AMBER electrostatic interactions
replaced with the corresponding values from Poisson-
Boltzmann calculations slightly improves the predictive
ability of the COMBINE models (models 46-54). The
substrate desolvation energy term makes the most important
contribution to the first principal component in these models.
The desolvation energy of the enzyme is also among the
five most significant energy contributions.

Chemometric Analysis of Model 4 (BUW-Scaled, without
FFD and EdesolV). The most influential variables are almost
the same in the unscaled and BUW-scaled models (Table
4). Model 4 was chosen for detailed description because it
shows one of the best statistical parameters out of the models
based on per residue van der Waals and electrostatic
contributions. This model has four latent variables, yields
an R2 of 0.91, aQ2 of 0.73, and an SDEPint of 0.59, and
shows good external validation (Tables 4 and 5). Validation

FIGURE 2: Stereoview of the DhlA haloalkane dehalogenase in complex with ligands. The 18 ligands are superimposed in the positions
obtained from energy refinement. The protein backbone is represented by a CR trace (A). The side chains of first-shell residues lining the
active site that are identified as significant contributors to substrate specificity in COMBINE analysis are shown in stick representation, and
in a magnified view in panel B where they are labeled according to the DhlA sequence. The active site water molecule that is included in
the COMBINE analysis is shown as a sphere.
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by permutation confirms no chance correlation in the model.
The robustness of this model is further supported by the fact
that a very similar model is derived when COMBINE
analysis is performed for the same structures with different
software (the COMBINE program, A. R. Ortiz) with slightly
different pretreatment and cross-validation procedures (data
not shown). Score plots for model 4 are shown in Figure 3,
while the loading plots are shown in Figure 4. The most
important variable in the first principal component is the

electrostatic interaction energy of Asp124, 124ele. This
component is most important for explaining the variance in
the binding affinities of compounds11, 12, and18 (listed in
order of decreasing significance). The most important
variable in the second principal component is the van der
Waals interaction energy of Trp125, 125vdw. This component
is particularly important for explaining the binding affinity
of compounds13 and14. In the third component (focused
on compounds2, 5, 4, 8, 10, 14, and18), the most significant

Table 2: Summary of the COMBINE Models

modela BUWb UVc FFDd Evdw
e Eele

f Edesolv-sur
g Eele

ES h ∆Gdesolv
S i ∆Gdesolv

Ej objk varl Am R2 SDEC Q2 SDEPint

1 - - N + + - - - - 18 448 4 0.911 0.342 0.728 0.596
2 - - R + + - - - - 18 436 3 0.893 0.375 0.734 0.590
3 - - E + + - - - - 18 24 2 0.865 0.420 0.770 0.548
4 + - N + + - - - - 18 448 4 0.910 0.343 0.734 0.590
5 + - R + + - - - - 18 434 3 0.888 0.382 0.734 0.590
6 + - E + + - - - - 18 23 2 0.865 0.420 0.774 0.543
7 - + N + + - - - - 18 448 4 0.959 0.198 0.649 0.576
8 - + R + + - - - - 18 232 4 0.964 0.185 0.700 0.532
9 - + E + + - - - - 18 105 4 0.970 0.167 0.748 0.488

10 - - N + + + - - - 18 449 5 0.924 0.316 0.722 0.603
11 - - R + + + - - - 18 445 3 0.885 0.388 0.704 0.622
12 - - E + + + - - - 18 7 2 0.864 0.421 0.774 0.544
13 + - N + + + - - - 18 449 5 0.924 0.316 0.722 0.604
14 + - R + + + - - - 18 445 3 0.882 0.393 0.705 0.622
15 + - E + + + - - - 18 7 2 0.864 0.421 0.774 0.544
16 - + N + + + - - - 18 449 4 0.959 0.198 0.648 0.577
17 - + R + + + - - - 18 227 4 0.967 0.178 0.718 0.516
18 - + E + + + - - - 18 111 4 0.966 0.178 0.747 0.488
19 - - N + + - - + + 18 450 4 0.903 0.356 0.705 0.621
20 - - R + + - - + + 18 443 3 0.885 0.388 0.704 0.622
21 - - E + + - - + + 18 8 2 0.864 0.421 0.774 0.544
22 + - N + + - - + + 18 450 6 0.939 0.283 0.779 0.538
23 + - R + + - - + + 18 439 3 0.885 0.388 0.704 0.622
24 + - E + + - - + + 18 7 2 0.864 0.421 0.774 0.544
25 - + N + + - - + + 18 450 4 0.959 0.197 0.649 0.576
26 - + R + + - - + + 18 222 4 0.962 0.190 0.687 0.544
27 - + E + + - - + + 18 112 4 0.967 0.176 0.749 0.487
28 - - N + - - - + + 18 199 3 0.909 0.345 0.745 0.577
29 - - R + - - - + + 18 192 2 0.858 0.431 0.733 0.591
30 - - E + - - - + + 18 7 2 0.864 0.421 0.774 0.544
31 + - N + - - - + + 18 199 4 0.918 0.328 0.752 0.570
32 + - R + - - - + + 18 188 2 0.861 0.427 0.745 0.578
33 + - E + - - - + + 18 7 2 0.842 0.455 0.741 0.582
34 - + N + - - - + + 18 199 3 0.842 0.386 0.494 0.692
35 - + R + - - - + + 18 117 3 0.858 0.366 0.677 0.553
36 - + E + - - - + + 18 45 2 0.817 0.416 0.716 0.518
37 - - N + - - + - - 18 502 5 0.930 0.303 0.742 0.580
38 - - R + - - + - - 18 490 3 0.898 0.365 0.755 0.567
39 - - E + - - + - - 18 14 2 0.831 0.471 0.718 0.607
40 + - N + - - + - - 18 502 5 0.925 0.314 0.738 0.586
41 + - R + - - + - - 18 490 3 0.890 0.379 0.756 0.564
42 + - E + - - + - - 18 17 2 0.831 0.471 0.718 0.607
43 - + N + - - + - - 18 502 4 0.924 0.269 0.581 0.629
44 - + R + - - + - - 18 269 4 0.913 0.286 0.467 0.709
45 - + E + - - + - - 18 171 4 0.954 0.208 0.556 0.648
46 - - N + - - + + + 18 504 5 0.933 0.297 0.731 0.593
47 - - R + - - + + + 18 497 3 0.898 0.365 0.709 0.617
48 - - E + - - + + + 18 6 3 0.885 0.387 0.788 0.527
49 + - N + - - + + + 18 502 5 0.922 0.320 0.733 0.590
50 + - R + - - + + + 18 491 3 0.889 0.381 0.696 0.630
51 + - E + - - + + + 18 9 2 0.864 0.421 0.774 0.544
52 - + N + - - + + + 18 504 4 0.924 0.268 0.580 0.630
53 - + R + - - + + + 18 269 4 0.933 0.252 0.477 0.703
54 - + E + - - + + + 18 172 4 0.945 0.227 0.549 0.653
a Model identifier.b Block unscaled weights.c Scaling to unit variance.d Fractional factorial design (FFD): N, without FFD; R, FFD with retained

uncertain variables; E, FFD with excluded uncertain variables.e van der Waals energy contributions from AMBER (X matrix). f Electrostatic energy
contributions from AMBER (X matrix). g Surface term of desolvation energy in theX matrix. h Enzyme-substrate interaction energy in the presence
of the surrounding solvent in theX matrix. i Change in desolvation energy of the substrate upon binding in theX matrix. j Change in desolvation
energy of the enzyme upon binding in theX matrix. k Number of objects.l Number of variablesX after threshold application.m Number of latent
variables.
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variables are 263vdw, 172vdw, 226vdw, 175vdw, and 125vdw. In
thefourth component (which explains thevariance in binding
affinity of compounds 5, 1, 6, 9, 4, 2, 18, and 17), variables
226vdw and 172vdw are most influential. The overall impor-
tance of each variable in model 4, as quantified by the
weighted regression coefficients, is presented in Figure 5.
The goodness of fi t and external predictive ability of the
model arepresented in Figure6. A stereoview of theenergy
contributions selected by COMBINE analysis with the
assigned type of energy contributions is shown in Figure 7.
A picture illustrating unfavorable interactions between long
substrate molecules (butanes and hexanes) and Trp175
together with positive interactions of these molecules with
three amino acid residues (Leu263, Met152, and Cys150)
on the opposite side of the active site is shown in Figure 8.

External Predictions of Binding Affinities for Mutant
Proteins. The applicability of the COMBINE models for
predictions was validated using two mutants of DhlA for
which the crystal structures were determined (19, 20). Four
substrate molecules with available experimental binding
constants were modeled in the active sites of the mutant
proteins. Theexperimental binding constantswerecalculated
only for models with the best SDEPext values (models 4and
40). Although the internal predictiveability of model 49 was
as good as that of model 40, model 49 led to significantly
worse external predictions. The trends in the changes of
binding affinity due to mutation arepredicted correctly using
both model 4 and model 40 without exception (Table 5).
The largest error was obtained for the substrate 1-bromo-2-
chloroethane, but this is not unexpected since the prediction
is made for both a new substrate and a new enzyme.
Generally, the predictions made using model 4 and model
40 are equivalent as shown by their SDEPext values (0.66
and 0.67, respectively).

DISCUSSION

Rational engineering of enzyme substrate specificity
requires detailed knowledge of the interactions taking place
between the enzyme and the substrates at atomic resolution.
Interaction energies based on molecular mechanics calcula-
tions are employed for the study of enzyme-substrate
interactions in comparative binding energy (COMBINE)
analysis (7). In this study, the applicability of COMBINE
analysis for protein engineering purposes has been investi-

gated. COMBINE analysis was conducted for 18 substrates
of thehaloalkanedehalogenaseDhlA. Theeffect of scaling,
variable selection, and addition of desolvation energy terms
on the predictive ability of the resulting models was
investigated. No scaling and BUW-scaling procedures pro-
vided robust modelswith good predictiveability (Q2 g 0.72
and SDEPint e 0.59), while autoscaling resulted in models
with chance correlation.

Variable selection demonstrated that the energy contribu-
tions from only a limited number of amino acid residues
(1%) are sufficient to explain a large proportion of the
variance (91%) in the binding constants. The models
retaining all energy contributionsafter applying pretreatment
thresholdsshowed very good fitting propertiesand predictive
ability, and it was concluded that variable selection proce-
dures (i.e., exclusion of the nonsignificant variables from
the data matrix) are not necessary for modeling the DhlA-
substrate binding affinities. Apparently, PLS was effective
enough to filter out nonsignificant interaction energy con-
tributions by giving them small weighting coefficients. The
inclusion of a surfaceareadependent desolvation energy term
did not improve the predictive ability of the models. The
inclusion of the electrostatic enzyme-substrate interactions
computed by numerical solution of thePoisson-Boltzmann
equation improved the quality of the models and resulted in
a COMBINE model that achieved very good predictive
ability (Q2 ) 0.74, SDEPint ) 0.59, SDEPext ) 0.67). The
incorporation of two additional terms, representing the
electrostatic energy contributions to the partial desolvation
of the substrates and the enzyme upon binding, resulted in
aCOMBINE model with good fitting properties (Q2 ) 0.78)
that provided good internal predictions (SDEPint ) 0.54) and
slightly worse predictions for objects not included in model
development (SDEPext ) 0.82).

A mechanistic interpretation of the models that were
constructed provides adetailed understanding of thestructure-
affinity relationships of DhlA substrates. The BUW-scaled
model containing van der Waals and electrostatic energy
terms for every residue (model 4) was chosen for this
purpose. Simultaneousexamination of thescoreplots (Figure
3), loading plots (Figure4), weighted regression coefficients
plot (Figure 5), and the structures of enzyme-substrate
complexes (Figure 7) enables identification of important
interactionsbetween thesubstratemoleculesand amino acid
residues that are key to understanding the differences in
affinity. Weexpect that knowledgeof these interactionscan
be used advantageously to propose mutant enzymes with
modified specificities. It is apparent from COMBINE
analysis that only a limited number of interactions are
important for explaining most of the differences in binding
among the substrates of DhlA. van der Waals interactions
are considerably more important than electrostatic interac-
tions. This result can be rationalized for the haloalkane
dehalogenase DhlA because its active site is small, being
evolutionarily optimized for the natural substrate, 1,2-
dichloroethane, whereas most of the substrates analyzed in
this study have a volume larger than that of 1,2-dichloroet-
hane, resulting in a number of close contacts between the
ligands and the enzyme active site. Furthermore, the sub-
strates that wereanalyzed aresimple, uncharged, and mainly
hydrophobic molecules. Experience from studying different
seriesof inhibitors interacting with different protein structures

Table 3: External Validation and Permutation Test of COMBINE
Models

modela objb varc Ad R2 SDEC Q2 SDEPint SDEPext INTCQ2

1* 9 444 4 0.985 0.143 0.742 0.587 0.561 -0.02
2* 9 425 3 0.980 0.165 0.879 0.401 1.008 -0.08
3* 9 16 3 0.982 0.157 0.924 0.318 0.973 -0.11
4* 9 444 4 0.981 0.160 0.738 0.590 0.629 -0.05
5* 9 426 3 0.981 0.160 0.890 0.383 1.003 -0.07
6* 9 15 3 0.982 0.157 0.924 0.318 0.973 0.01
7* 9 444 4 0.989 0.103 0.544 0.662 0.559 0.39
8* 9 204 4 0.994 0.078 0.729 0.510 0.537 0.29
9* 9 105 4 0.998 0.048 0.846 0.385 0.589 0.37

a Model identifier. Thenumber corresponds to themodelspresented
in Table 2. An asterisk indicates that only half of the objects were
used in a model.b Number of objects in a model. Working set: 2, 4,
6, 8, 9, 13-15, and 17. Validation set: 1, 3, 5, 7, 10-12, 16, and 18.
c Number of variablesX after threshold application.d Number of latent
variables.
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by COMBINE analysis (7-12) indicates that there is not a
single trend across all systems, and that the dominating
interactions depend on the physicochemical features of the
variations in the ligand series and the characteristics of the
protein binding site. Examination of theweighted regression
coefficients plot reveals that most of the important van der
Waals interactions show positive coefficients with only one
exception, Trp125. Most of theelectrostatic interactionsshow
negative coefficients as a result of covariations in the
behavior of the variables. In those cases where electrostatic
desolvation energy is apenalty to binding and important for
explaining differences in activity, there wil l be some
electrostatic interactions in thebinding site that wil l correlate
with the desolvation energy. These interactions wil l be
detected by COMBINE analysis as opposing binding, even
though their individual contribution is favorable to binding.
COMBINE analysis is therefore detecting an overall unfa-
vorable electrostatic desolvation effect that the favorable

electrostatic interactions within the binding site are unable
to overcome. The coefficients in models including explicit
desolvation terms corroborate this interpretation.

Table 4: Most Important X Variablesa in COMBINE Models

model 1 model 2 model 3 model 4 model 5 model 6 model 7 model 8 model 9

172vdw 124vdw 124vdw 125vdw 124vdw 124vdw 164vdw 125vdw 125vdw

125vdw 125vdw 125vdw 172vdw 125vdw 125vdw 172vdw 164vdw 120vdw

164vdw 172vdw 164vdw 164vdw 172vdw 164vdw 125vdw 120vdw 126vdw

124vdw 164vdw 172vdw 124vdw 164vdw 172vdw 171vdw 145vdw 164vdw

222vdw 175vdw 222vdw 222vdw 175vdw 222vdw 97ele 126vdw 97ele

175vdw 289vdw 289vdw 175vdw 289vdw 289vdw 261vdw 97ele 172vdw

128vdw 222vdw 175vdw 128vdw 222vdw 175vdw 196vdw 172vdw 171vdw

289vdw 223vdw 262vdw 289vdw 223vdw 176ele 128vdw 171vdw 196vdw

223vdw 125ele 176ele 223vdw 125ele 293ele 173vdw 127vdw 121ele

226vdw 260ele 293ele 226vdw 260ele 64ele 175vdw 261vdw 59ele

263vdw 176ele 64ele 263vdw 176ele 168vdw 120vdw 130vdw 261vdw

262vdw 226ele 168vdw 262vdw 226ele 167vdw 145vdw 196vdw 189vdw

124ele 172ele 167vdw 124ele 262vdw 271vdw 189vdw 128vdw 128vdw

179vdw 175ele 271vdw 179vdw 172ele 230ele 168vdw 121ele 273ele

125ele 262vdw 230ele 125ele 175ele 291ele 104vdw 175vdw 104vdw

176vdw 179vdw 291ele 176vdw 179vdw 116ele 184vdw 104vdw 203vdw

172ele 263ele 116ele 172ele 176vdw 72ele 203vdw 184vdw 184vdw

226ele 311ele 72ele 226ele 263ele 244ele 170vdw 203vdw 163ele

260ele 164ele 244ele 56vdw 164ele 134vdw 126vdw 173vdw 175vdw

176ele 176vdw 61ele 260ele 311ele 61ele 174vdw 57ele 173vdw

56vdw 128vdw 134vdw 224vdw 128vdw 274vdw 167vdw 122vdw 57ele

224vdw 262ele 274vdw 176ele 149vdw 50vdw 121ele 189ele 244ele

260vdw 149vdw 50vdw 260vdw 262ele 104ele 57ele 189vdw 281vdw

165vdw 55ele 104ele 165vdw 260vdw - 260vdw 174vdw 282vdw

57vdw 224ele - 57vdw 55ele - 189ele 123vdw 287vdw

vdw first shellb 12 9 7 12 9 6 5 5 4
ele first shellc 3 7 0 4 4 0 0 0 0
vdw second shelld 7 4 7 7 5 7 16 16 14
elesecond shelle 3 5 10 2 7 10 4 4 7

a Variables are sorted according to absolute values of weighted regression coefficients (only 25 top scoring variables are listed); first-shell
residuesare in bold. b Number of first-shell residuesdisplaying van der Waals type interactions.c Number of first-shell residuesdisplaying electrostatic
type interactions.d Number of second-shell residues displaying van der Waals type interactions.e Number of second-shell residues displaying
electrostatic interactions.

Table 5: External Predictions of Steady-State Dissociation
Constants for Haloalkane Dehalogenase Mutants Using Models 4d

and 40e

wild type    Phe172Trp

no.a substrate exptb exptb predictiond predictione

2′ 1-chlorohexane 1.40    0.57 0.22     0.28
6′ 1,2-dichloroethane 0.53    5.13 8.47     8.83
8′ 1,2-dibromoethane 0.01    0.03 0.20     0.20

19′ 1-bromo-2-chloroethane 0.07    0.10 1.28     1.38

wild type        Trp175Tyr

no.a substrate exptc exptc predictiond predictione

6′′ 1,2-dichloroethane 0.53       2.85 0.83    0.73
8′′ 1,2-dibromoethane 0.01       0.06 0.04    0.03

a A single prime corresponds to Phe172Trp, and a double prime
corresponds to Trp175Tyr.b From ref 20. c From ref 19.

FIGURE 3: Score plots for latent variables t1 vs t2 (A) and t3 vs t4
(B) for model 4. Theobjects (compounds) arenumbered according
to Table 1.
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The van der Waals interactions with positive coefficients
can also be explained on a physical basis. Better van der
Waals interactions result in better binding affinity. Most of
the residues with positive van der Waals contributions line
the active site cavity (Table 4 and Figure 7). Those further
away may be explained by general improvement in packing.
These residues explain most of the third and fourth principal
components but also contribute to the first and second
components.

A favorable van der Waals interaction of Asp124 is
observed for the substrates 1-chlorohexane, 1-bromohexane,
1,2-dibromoethane, and 1,2-dibromopropane, while unfavor-
able interactions are observed with 2-chloroethanol, 2-bro-
moethanol, and 2-bromoacetamide in the first component.
Asp124 is a nucleophile that initiates the dehalogenation

reaction by nucleophilic attack on the carbon atom bonded
to halogen in a substrate molecule (16, 25). This attack leads
to formation of a covalent alkyl-enzyme ester and a halide
ion. Asp124 is positioned on a nucleophile elbow (14) and
points toward the active site cavity.

The aromatic ring of Phe128 displays steric hindrance with
epichlorohydrine, epibromohydrine, 1,2-dichloropropane,
2-chloroacetamide, and 2-bromoacetamide in the second
component. We noted that the much smaller Ala is present
in the equivalent position of dehalogenases LinB and DhaA
(37). Both enzymes exhibit better activity withâ-substituted
haloalkanes than DhlA. Substitution of Phe128 with a smaller
amino acid may result in enzymes with improved affinity
for â-substituted substrates.

van der Waals energies of Leu263, Phe172, Val226,
Trp175, Trp125, Cys150, and Met152 are among the most
significant interactions in the third component. Leu263 makes
unfavorable contacts with the two largest substrates in the
data set, namely, 1-bromohexane and 1-chlorohexane. A
smaller amino acid in position 263 may improve the affinity
for long-chain substrates. Both Cys150 and Met152 have the
opposite effect on binding long-chain substrates. The van
der Waals interaction energy of Cys150 with substrates2
and 4 is 1 order of magnitude lower than with other
substrates. Trp175 makes direct van der Waals contact with
the halogen substituent of all substrates and provides
stabilization in a manner similar to that of Trp125 (28). Most
of the substrates interact with Trp175 favorably, but 1-bro-
mohexane, 1-chlorohexane, 1-bromobutane, and 1-chlorobu-
tane make unfavorable van der Waals contacts with Trp175
HNε1. Mutagenesis of Trp175 results in proteins with low
activity (19, 28); therefore, improved binding for these
substrates can only be achieved by mutations in neighboring
residues (helix 5). Nine of 12 in vivo mutants of DhlA with
improved activity toward 1-chlorohexane (30) carried modi-
fications in helix 5 or its close surroundings. Priest and co-
workers suggested that this region is critical for the specificity
of DhlA. This observation is in line with the COMBINE
model which localizes seven highly significant interactions
in helix 5 (Table 4 and Figure 7). The importance of Val226
could not be directly attributed to the binding of specific

FIGURE 4: Loading plots of wc1 vs wc2 (A) and wc3 vs wc4 (B) for
model 4. Selected variables (energy contributions) are numbered
according to the DhlA sequence.

FIGURE 5: Plot of weighted regression coefficients for model 4.
Selected variables (energy contributions) are numbered according
to the DhlA sequence.

FIGURE 6: Plot of observed vs predictedKm values for model 4.
The objects (compounds) are numbered according to Tables 1 and
5. Compounds from the working (training) set are represented as
white squares, and compounds from the prediction set are repre-
sented as triangles (the white triangle represents a prediction made
for a complex of a new substrateand a new mutant enzyme). A
single prime corresponds to the Phe172Trp mutant, and a double
prime corresponds to the Trp175Tyr mutant.
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substrates. This residue is not in direct contact with the
substrate molecules, but makes important interactions with
Trp125 and Phe172. The importance of these interactions
has been experimentally demonstrated by Schanstra and co-
workers (29). Many interactions significant for the third
component also participate in the fourth component, for
example, Val226, Phe172, Phe222, Glu56, Leu263, or
Trp175. Phe172 contributes to stabilization of the transition
stateand theproduct (32, 62). Schanstraand co-workers (20)
performed mutational analysis at position 172 and con-
structed 16 different point mutants, some of which had
modified activity and substraterange. Quantitativestructure-
function relationship (QSFR) analysis conducted with the
same set of point mutants identified physicochemical proper-
ties critical for position 172: aromaticity, main-chain flex-
ibility , refractivity, and bulkiness (63). Like Trp175 and
Leu263, Phe172 also makes unfavorable van der Waals
interactions with the long-chain substrates 1-bromohexane
and 1-chlorohexane. Phe172 is among the most important
residues of DhlA as it displayed both significant van der
Waals and electrostatic interactions.

Two of the interactionswith negativecoefficients, Asp124ele

and Trp125vdw, are very important for the first and second
component, respectively. Asp124ele together with the sub-
strate electrostatic desolvation term dominates the first
component of themodel employing both AMBER-calculated
electrostatic interaction energies and the change in the

electrostatic desolvation energy of desolvation of the sub-
strate and the enzyme upon complex formation (e.g., model
22). The variables 124ele and ∆Gdesolv

S are negatively cor-
related in this model and explain mainly the variability in
the dissociation constants for the substrates 2-bromoaceta-
mide, 2-chloroethanol, and 2-bromoethanol. Desolvation of
these polar molecules is energetically demanding, resulting
in poor binding affinity. The negative coefficient of Trp125
can beattributed to adifferent behavior of theenergy changes
associated with this residue in comparison with the rest of
the variables. This can be observed in the partial weights
and loading plots rather than in a different slope in the
correlation with theexternal vector. Thedifferencemay have
a structural origin, since Trp125 is located in a loop buried
in the protein core, while most of the rest of the important
interactions are associated with R-helices. Trp125 appears
to be important for explaining differences between chlori-
nated and brominated derivatives. The essential role of
Trp125 for binding of the halogen substituent, stabilization
of the transition state, and halide ion release upon reaction
has been postulated from crystallographic and fluorescence
quenching studies (64), from site-directed mutagenesis
experiments (28), and from molecular modeling (32, 36).
The electronegative aromatic indole nitrogens of the tryp-
tophans provide polarization of the N-H bond, resulting in
a slightly positive hydrogen that can interact with the
halogen.

In summary, the most influential active site residues can
be divided into two classes, with respect to their interaction
with the substrates. The first class is formed by residues
separating chlorinated derivates from brominated derivates.
These residues include Trp125, Trp175, and Pro223, and
form the halogen binding site in the protein, which is more
selective for brominated derivatives. Mutations affecting
these residues should be used to modulate the halogen
specificity of the enzyme. The second set of residues
discriminatessubstratesby their interactionswith thesubstrate
alkyl  side  chain.  It includes Phe164, Phe172, Phe222,
and Leu263, and there isacontribution from Asp124 aswell.
Mutations affecting these residues can be used to tune the
activity of the enzyme for different side-chain specificities.

Al l amino acid residues discussed so far belong to the so-
called first shell of residues, i.e., residues lining the active

FIGURE 7: Stereoview of DhlA with assigned energy contributions. The protein backbone is represented by the CR trace. The CR atoms
of the residues showing the most important energy contributions in model 4 are shown as balls (see Table 4). Dark-colored residues have
only van der Waals energy contributions, while light-colored residues have both van der Waals and electrostatic energy contributions. The
substrate molecules are in the positions obtained from energy minimization.

FIGURE 8: Stereoview of the substrate molecules docked in the
enzymeactivesite. Unfavorablevan der Waals interactionsbetween
long-chain substrates, i.e., butanes and hexanes, and Trp175 are
represented by van der Waals surfaces of interacting atoms.
Favorable interactions of the same long-chain molecules with
Leu263, Met152, and Cys150 positioned on the opposite side of
the active site can be seen.
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siteof DhlA. Their significance isnot unexpected since these
residues make direct contacts with the substrate molecules
and their possible role could be inferred from the X-ray
structure. The identification of second-shell residues might
be more useful for protein design purposes. In DhlA, such
residues were also identified with the COMBINE models
and include Phe222, Leu179, Lys176, Lys224, Val165, and
Pro57 (listed in order of their significance; see Table 4).
These residues represent suitable targets for future site-
directed mutagenesis experiments.

SUPPORTING INFORMATIO N AVAILABLE

Parameters derived for halogenated compounds. This
material is available free of charge via the Internet at http://
pubs.acs.org. 

REFERENCES

1. Janssen, D. B., Pries, F., and Van der Ploeg, J. R. (1994) Annu.
ReV. Microbiol. 48, 163-191.

2. Fetzner, S., and Lingens, F. (1994) Microbiol. ReV. 58, 641-
685.

3. Fetzner, S. (1998) Appl. Microbiol. Biotechnol. 50, 633-657.
4. Copley, S. D. (1998) Curr. Opin. Chem. Biol. 2, 613-617.
5. Swanson, P. E. (1999) Curr. Opin. Biotechnol. 10, 365-369.
6. Vlieg, J. E. T. H., Poelarends, G. J., Mars, A. E., and Janssen,

D. B. (2000) Curr. Opin. Microbiol. 3, 257-262.
7. Ortiz, A. R., Pisabarro, M. T., Gago, F., and Wade, R. C.

(1995) J. Med. Chem. 38, 2681-2691.
8. Ortiz, A. R., Pastor, M., Palomer, A., Cruciani, G., Gago, F.,

and Wade, R. C. (1997) J. Med. Chem. 40, 1136-1148.
9. Pastor, M., Perez, C., and Gago, F. (1997) J. Mol. Graphics

Modell. 15, 364-371.
10. Perez, C., Pastor, M., Ortiz, A. R., and Gago, F. (1998) J.

Med. Chem. 41, 836-852.
11. Wade, R. C., Ortiz, A. R., and Gago, F. (1998) in 3D QSAR

in Drug Design (Kubinyi, H., Folkers, G., and Martin, Y. C.,
Eds.) pp 19-34, Kluwer Academic Publishers, Dordrecht, The
Netherlands.

12. Tomic, S., Nilsson, L., and Wade, C. R. (2000) J. Med. Chem.
43, 1780-1792.

13. Keuning, S., Janssen, D. B., and Witholt, B. (1985) J.
Bacteriol. 163, 635-639.

14. Ollis, D. L., Cheah, E., Cygler, M., Dijkstra, B., Frolow, F.,
Franken, S. M., Harel, M., Remington, S. J., Silman, I., Schrag,
J., Sussman, J. L., Verschueren, K. H. G., and Goldman, A.
(1992) Protein Eng. 5, 197-211.

15. Nardini, M., and Dijsktra, B. W. (1999) Curr. Opin. Struct.
Biol. 9, 732-737.

16. Verschueren, K. H. G., Seljee, F., Rozeboom, H. J., Kalk, K.
H., and Dijkstra, B. W. (1993) Nature 363, 693-698.

17. Verschueren, K. H. G., Franken, S. M., Rozeboom, H. J., Kalk,
K. H., and Dijkstra, B. W. (1993) J. Mol. Biol. 232, 856-
872.

18. Ridder, I. S., Rozeboom, H. J., and Dijkstra, B. W. (1999)
Biol. Crystallogr. 55, 1273-1290.

19. Krooshof, G. H., Ridder, I. S., Tepper, A. W. J. W., Vos, G.
J., Rozeboom, H. J., Kalk, K. H., Dijsktra, B. W., and Janssen,
D. B. (1998) Biochemistry 37, 15013-15023.

20. Schanstra, J. P., Ridder, I. S., Heimeriks, G. J., Rink, R.,
Poelarends, G. J., Kalk, K. H., Dijkstra, B. W., and Janssen,
D. B. (1996) Biochemistry 35, 13186-13195.

21. Schindler, J. F., Naranjo, P. A., Honaberger, D. A., Chang,
C. H., Brainard, J. R., Vanderberg, L. A., and Unkefer, C. J.
(1999) Biochemistry 38, 5772-5778.

22. Schanstra, J. P., and Janssen, D. B. (1996) Biochemistry 35,
5624-5632.

23. Krooshof, G. H., Floris, R., Tepper, A., and Janssen, D. B.
(1999) Protein Sci. 8, 355-360.

24. Pries, F., Kingma, J., Pentega, M., VanPouderoyen, G.,
Jeronimus-Stratingh, C. M., Bruins, A. P., and Janssen, D. B.
(1994) Biochemistry 33, 1242-1247.

25. Pries, F., Kingma, J., and Janssen, D. B. (1995) FEBS Lett.
358, 171-174.

26. Pries, F., Kingma, J., Krooshof, G. H., Jeronimus-Stratingh,
C. M., Bruins, A. P., and Janssen, D. B. (1995) J. Biol. Chem.
270, 10405-10411.

27. Hynkova, K., Nagata, Y., Takagi, M., and Damborsky, J.
(1999) FEBS Lett. 446, 177-181.

28. Kennes, C., Pries, F., Krooshof, G. H., Bokma, E., Kingma,
J., and Janssen, D. B. (1995) Eur. J. Biochem. 228, 403-407.

29. Schanstra, J. P., Ridder, A., Kingma, J., and Janssen, D. B.
(1997) Protein Eng. 10, 53-61.

30. Pries, F., VandenWijngaard, A. J., Bos, R., Pentenga, M., and
Janssen, D. B. (1994) J. Biol. Chem. 269, 17490-17494.

31. Krooshof, G. H., Kwant, E. M., Damborsky, J., Koca, J., and
Janssen, D. B. (1997) Biochemistry 36, 9571-9580.

32. Damborsky, J., Kuty, M., Nemec, M., and Koca, J. (1997) J.
Chem. Inf. Comput. Sci. 37, 562-568.

33. Lightstone, F. C., Zheng, Y.-J., Maulitz, A. H., and Bruice,
T. C. (1997) Proc. Natl. Acad. Sci. U.S.A. 94, 8417-8420.

34. Kuty, M., Damborsky, J., Prokop, M., and Koca, J. (1998) J.
Chem. Inf. Comput. Sci. 38, 736-741.

35. Damborsky, J. (1998) Pure Appl. Chem. 70, 1375-1383.
36. Lightstone, F. C., Zheng, Y. J., and Bruice, T. C. (1998) J.

Am. Chem. Soc. 120, 5611-5621.
37. Damborsky, J., and Koca, J. (1999) Protein Eng. 12, 989-

998.
38. Damborsky, J., Kuty, M., Nemec, M., and Koca, J. (1997) in

QuantitatiVeStructure-ActiVity Relationships in EnVironmental
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