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ABSTRACT. Comparative binding energy (COMBINE) analysis was conducted for 18 substrates of the
haloalkane dehalogenase frofanthobacter autotrophicusJ10 (DhlA): 1-chlorobutane, 1-chlorohexane,
dichloromethane, 1,2-dichloroethane, 1,2-dichloropropane, 2-chloroethanol, epichlorohydrine, 2-chloro-
acetonitrile, 2-chloroacetamide, and their brominated analogues. The purpose of the COMBINE analysis
was to identify the amino acid residues determining the substrate specificity of the haloalkane dehalogenase.
This knowledge is essential for the tailoring of this enzyme for biotechnological applications. Complexes
of the enzyme with these substrates were modeled and then refined by molecular mechanics energy
minimization. The intermolecular enzymsubstrate energy was decomposed into residue-wise van der
Waals and electrostatic contributions and complemented by surface area dependent and electrostatic
desolvation terms. Partial least-squares projection to latent structures analysis was then used to establish
relationships between the energy contributions and the experimental apparent dissociation constants. A
model containing van der Waals and electrostatic intermolecular interaction energy contributions calculated
using the AMBER force field explained 91% (73% cross-validated) of the quantitative variance in the
apparent dissociation constants. A model based on van der Waals intermolecular contributions from AMBER
and electrostatic interactions derived from the Poisfoltzmann equation explained 93% (74% cross-
validated) of the quantitative variance. COMBINE models predicted correctly the change in apparent
dissociation constants upon single-point mutation of DhIA for six enzysubstrate complexes. The

amino acid residues contributing most significantly to the substrate specificity of DhIA were identified;
they include Asp124, Trpl125, Phel64, Phel72, Trpl75, Phe222, Pro223, and Leu263. These residues are
suitable targets for modification by site-directed mutagenesis.

Haloalkane dehalogenases are microbial enzymes thatbe identified so that they can be modified by site-directed
catalyze dehalogenation reactiofis-8), which are important ~ mutagenesis. Comparative binding energy (COMBINE)
for the degradation of environmental pollutan4—g). analysis has been shown to be a useful technique for deriving
Halogenated aliphatic compounds are among the mostquantitative structureactivity relationships from a set of
frequently occurring pollutants. Large quantities of these three-dimensional structures of enzynliggand complexes
compounds are widely used as pesticides, solvents, fire(7—12). Here, we use COMBINE analysis to derive a
retardants, hydraulic and heat transfer fluids, and cleaningpredictive model for substrate binding specificity in which
agents. They are environmentally dangerous and are hazard-= ) — :
ous to humans due their toxic, genotoxic, teratogenic, and _ Abbreviations: BUW, block unscaled weights; COMBINE, com-
irritating effects. Unfortunately, wild type enzymes often do parative binding energy; DhiA, haloalkane dehalogenase fam
Irrtating € - N lely, wild typ ymes c autotrophicusGJ10;EqES, enzyme-substrate electrostatic interaction
not acquire sufficiently high activity or specificity for energy in the presence of the surrounding solvent derived from the
degradation of environmental pollutants. Protein design can PfirS]SO(r;rBO:tzmann equa)gorEdses%Hunlsur_face area defpendeglt term

H H H of the desolvation energ¥Eqeson’, desolvation energy of a substrate;
be us.ed to improve the C:_’:ltalytlc properties of SUCh. .er.]zymeS'EdesowE, desolvation energy of an enzyme; FFD, fractional factorial
To tailor the enzyme for improved substrate specificity, the gesign;AG., overall electrostatic free energy change upon binding;
amino acid residues that participate in substrate binding mustGe£>, electrostatic energy for all atoms in the enzyrnsebstrate

complex;Geie, electrostatic energy for substrate atoi@s;F, electro-
static energy for enzyme atomsGgesons, change in desolvation energy
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important interactions for binding are highlighted so that the T, 1. steady-State Dissociation Constants of Haloalkane
model can be used to guide mutagenesis experiments t@ehalogenase

modify the enzyme’s substrate specificity. log K, log K
The haloalkane dehalogenase isolated from the soil compound (mM) compound (mM)

bacterium Xanthobacter autotrophicu§J10 (DhlA) is a 1 1-chlorobutane 0.3410 1,2-dibromopropane  0.11
soluble globular enzymel@). DhIA is composed of 310 2 1-chlorohexane 0.1511 2-chloroethanol 2.60
residues and has a molecular mass-686 kDa. It consists ‘31 i-gomoﬁutame —(1)-53 ig Z-DFﬁT?eﬁhS?? 11-&‘31
H H . H H - X —U. | I .

of tWQ dlfferen.t domains: - thea/f-fold domain (main 5 dich?orc?mitf?ar?e 2.0014 ggigro%?)h{/drinz 0.34
domain) which is conserved for ail/-hydrolases 14, 15) 6 1,2-dichloroethane —0.28 15 2-chloroacetonitrile ~ 0.80
and the so-called cap domain. The main domain is composed7 dibromomethane 0.3816 2-bromoacetonitrile —0.31

of eight 3-sheets surrounded by sixhelices, whereas the g 1,2-dibromoethane —2.00 17 2-chloroacetamide 2.00

cap domain is composed of five additionalhelices. The 1,2-dichloropropane  1.1118 2-bromoacetamide  1.30
active site of the enzyme is located between these two ®From ref39.

domains in an internal, predominantly hydrophobic cavity

that can be reached from the solvent through a tunnel. Thepetween the substrate and each enzyme reskussS, (i)

catalytic residues form a catalytic triad (nucleophile, base, the change in the intramolecular energy of the substrate upon
and acid) that is highly conserved among all of 8- pinding to the enzyme)\ES, (iii) the change in the intramo-
hydrolases known to date. The mechanism of dehalogenationecular energy of the enzyme upon substrate bindiif,

is hydrolytic and requires the substrate and a water molecule(iv) the desolvation energy of a substraBesors, and (V)
in the active site; no other cofactor is necessary. During the the desolvation energy of the enzynt@esorf.

hydrolytic dehalogenation, a carbehalogen bond in the
substrate is cleaved and the corresponding alcohol is formed. —E  ES4 AES+ AEE+ S 4 E

Details of the reaction mechanism have been investigated AU = Biyer ™+ AE+ AE" Byeson” + Beson (1)
by crystallography16—18), kinetic measurement§$—23),

site-directed mutagenesi®4—31), and molecular modeling The second and' third term.s, Qescribing changes .in in-
(32-38). tramolecular energies upon binding, were neglected in the

study presented here because the DhIA substrates are rather
small molecules and there is no evidence for large differences

. . ) ) . " the structure of DhIA when different substrates are bound.
ical calculations) and their conformational behavior (molec-

S . Intermolecular energy contributions were decomposed into
ular dynamic simulations). The study presented here, on the 9y P

. . van der Waals and electrostatic interactions.
_othe_r h".md' deals with the subs’;rate specificity Of_ DhIA' and In the first step of COMBINE analysis, a set of structures
its aim is to construct a predictive model for estimation of

L o . . of enzyme-substrate complexes is prepared and the total
the binding affinities for mutant proteins. To this end, a y P brep

. ) . . . binding energy is calculated for each of these complexes.
CO.ZIBINE analysa V\;as t%arrclj?f? out to |Qert1)§|f)é_the pﬁrc_ot?n The following step is the decomposition of the enzyme
:)ef5|18uec?1|r§r?r?§tr:asdl aen dorbro?nir|1a?é?jngﬁ;rllgti(I:ns:angsta;a!cglsleosf substrate interaction energy on a per residue basis for each
DhlA. The effects of different scaling and variable selection of the complexes. A matrix is then constructed in which the

procedures on the quality of the models were studied. The rows represent the different compounds studied and the
. ) : columns contain the residue-based energy information, which
best model explained 93% (74% cross-validated) of the . ! o 9y on, Wi

o . A is separated into two blocks (van der Waals and electrostatic),
guantitative variance in binding constants and enabled P ( )

) e . . plus an additional column containing the experimental
|d_en_t|f|cat|on _o_f_the residues that (_:ontrlbute most to the binding affinities. Further columns can contain additional
binding specificity; these are candidates for site-directed

S ) e energy terms such as the substrate desolvation energy terms.
mutagenesis aimed at altering the substrate specificity ofThis matrix is then projected onto a small number of

Previous theoretical studies were focused on the reaction
mechanism of haloalkane dehalogenases (quantum mecha

DhIA. orthogonal “latent variables” using partial least-squares (PLS)
METHODS analysis 40, 41), and the original energy terms are given
weights,w;, according to their importance in the model, in

Experimental DataApparent dissociation constanté,{) the form of PLS pseudocoefficients. The higher these

were used as the measure of binding affinities for a set of coefficients are, the more significant they are for explaining
18 substrates. The binding affinities of these compounds varythe variance in the experimental data. Thus, in the simplest
over 4 orders of magnitude. TH&, values determined by ~ form, the COMBINE model for binding affinityAG, is of
Schanstra et al3Q) were logarithmically transformed (Table the following form C is a constant term):
1). Experimental activities were measured using steady-state
kinetic analysis with purified DhIA. TheK, values for AG = XWiAui +C (2)
dichloromethane, 2-chloroethanol, and 2-chloroacetamide
were fixed at the highest measured concentrations since the parametrization of Halogenated Substratéke all-atom
exact dissociation constants were not repor&g). ( AMBER molecular mechanics force fieldt?) was used
Overview of COMBINE AnalysisBinding energies are  throughout, and consistent parameters for the haloalkanes
calculated for the set of enzymsubstrate complexes using were derived to describe the bonded and nonbonded interac-
a molecular mechanics force field. The total binding energy, tions. For each molecule, molecular electrostatic potentials
AU, may be assumed to be given by the sum of five terms: (MEPSs) were calculated from the corresponding ab initio
(i) the sum of intermolecular interaction energiesu wave functions (RHF MP2//6-31G*) using Gaussian@3) (
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following full energy minimization. Partial atomic charges etal. (1994) implemented in AMBER 5.0. One hundred steps
were then derived by fitting each MEP to a monopele of steepest descent were followed by conjugate gradient
monopole expression using the RESP methodoldgy45). energy minimization until the root-mean-square value of the
One conformation of each molecule (trans) was employed potential energy gradient was less than 0.1 kcal tal 2.

in the fit, except for 1,2-dichoroethane for which both the A nonbonded cutoff of 10.0 A and a distance-dependent
gauche and trans conformations were considered. Atom typeglielectric constante(= 4r;;) were used. The ANAL module
for carbon atoms in the haloalkanes (CT) were taken from of AMBER 5.0 was used for energy decomposition of the
the AMBER database. Equilibrium bond lengths and angles refined complexes.

for chlorinated and brominated hydrocarbons were obtained Estimation of Surface Desation Energy The surface

by averaging equivalent terms from the ab initio 6-31G(d) desolvation energyHgeso-su) Of @ substrate was calculated
energy-minimized structures (Table 1). Dihedral parametersas a sum of atomic surface accessibilities multiplied by
involving halogens were adjusted so as to reproduce in thehydrophobicity coefficients for specific atom types. Atomic
molecular mechanics force field the torsional barriers surface accessibility was calculated using the NACCESS
calculated ab initio. For this purpose, the SPASMS module 2.1.1 program%2). This program is an implementation of
in AMBER (46) was employed. Nonbonded parameters for the method of Lee and Richards. Appropriate hydrophobicity
halogen atoms were developed and tested following a coefficients were taken from the literatur®3( 54) as
previously reported proceduréq) with some modifications.  follows: carbon-containing group, 18; neutral oxygen or
In brief, periodic cubic boxes (27 A« 27 A x 27 A) nitrogen,—9; sulfur,—5; charged nitrogen;-38; and charged
containing 149 solvent molecules of 1,2-dichloroethane, oxygen,—37. In this context, we assigned a value of 1 to
bromoethane, and acetonitrile were constructed to reproducehe hydrophobicity coefficient of halogen atoms.

the density and enthalpy of vaporizationHy.p) of these Estimation of the Electrostatic Contributions to the Free
liquids at 300 K. The compressibility values (in"fMbar ) Energies of Binding. Continuum Electrostatics Calculations.
that were used were 84.6, 142.3, and 107.0, respectd®ly ( The overall electrostatic free energy change upon binding
Molecular dynamics simulations were carried out at 300 K (AGgie) can be calculated from the total electrostatic energy
using the SANDER module in AMBER. Both the temper- of the system by running three consecutive calculations on
ature and the pressure were coupled to thermal and pressuréhe same grid35, 56): one for all the atoms in the complex
baths with relaxation times of 0.2 and 0.6 ps, respectively. (GeS), one for the substrate atoms aloi@§), and a third

In a 20 ps heating phase, the temperature was graduallyone for the enzyme atoms alon&e(f). Since the grid
increased under constant-volume conditions, and the veloci-definition is the same in the three calculations, the grid
ties were reassigned at each new temperature according to @nergy artifact cancels out when the electrostatic contribution
Maxwell—Boltzmann distribution. This was followed by an  to the binding free energy is expressed as the difference in
equilibration phase of 200 ps at 300 K, and by a 300 ps energy between the bound and the unbound molecule:
sampling period at constant pressure during which system

coordinates were saved every 50 ps. All bonds involving AGge= Gye> — (Gye + Gue) 4)
hydrogens were constrained to their equilibrium values by
means of the SHAKE algorithm4@), which allowed an An alternative method, which allows partitioning at the

integration time step of 2 fs to be used. A nonbonded cutoff residue level, considers a different description of the binding
of 10 A was employed, and the lists of nonbonded pairs were process. This consists of first desolvating the apposing
updated every 25 steps. Density values were provided directlysurfaces of both the substrate and enzyme and then letting
by the SANDER moduleAH,,, values were calculated the charges of the two molecules interact. It is then possible

according to the equation to separate the change in electrostatic free energy on
molecular associatiofAGeje) into three componentSH—
AH, = RT = Ejyer 3) 57): (i) the enzyme-substrate interaction energy in the

presence of the surrounding solvelt£9), (ii) the change
where Eiyr is the interaction energy of the system, which in desolvation energy of the substrate upon bindinGde
encompasses both the electrostatic and van der Waalsov®), and (iii) the change in desolvation energy of the enzyme
components obtained directly from the SANDER output, Upon binding AGgesoiv):
divided by the number of molecules in each box.

X _ - ES s E
Construction of EnzymeSubstrate Complexes and Energy AGge= Ege ~ t+ (AGgeson, T AGgesoiy) (5)
Analysis.The complexes were modeled with AMBER 5.0 ] o )
(50) using the structurelf) of DhIA complexed with the This decomposition is exact, contains all cross terms, and

substrate 1,2-dichloroethane (DCE) (PDB entry 2DHC) as ¢an be profitably used in COMBINE analysis. The first term
a template. The WHATIF 5.0 prograns) was used for N eq5, thatis, the electrostatic energy of interaction between
adding the polar hydrogen atoms. His289 was singly pro- the group of atoms in the enzyme and the groupsaitoms
tonated in thed-position in accordance with its catalytic N the substrate, can be described (in kilocalories per mole)
function. Nonpolar hydrogen atoms were added using the by

AMBER 5.0 graphic interface xLEaP. The substrates were E

manually docked in the enzyme active site and aligned so E ES— G (6)

that the X-C;—C, angle (where X is a halogen atom) of ele et

each substrate could be superimposed on that of the DCE

molecule. These initial structures of the complexes were whereq represents the atomic point charges ofitheatom
refined using the molecular mechanics force field of Cornell of the enzyme angh; is the electrostatic potential at thi
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atom of the enzyme created by tB@atoms of the substrate.  the previous derivation, and as demonstrated below in the

Equation 6 can be recast in the form of a suniNaksidue- Results, it is clear that the total electrostatic binding free
based contributions(), whereN is the number of residues  energy is partitioned taking into account the cross terms in
in the enzyme, each of these containk@toms: the reaction field and no double counting is done; i.e., the
N K N sum of electrostatic terms in the energy matrix yields the

E ES— Q=S &, @ electrostatic fr.ee. energy of binding for that partlcula_tr
ele n;k; nk¥nk re compound. This is an important feature that allows easier

interpretation of the regression models, avoiding convoluted

This allows the total electrostatic free energy of substrate effects in the energetic description of the variables. It is also

binding to be expressed as a sum of residue-based contribuworth noting that the formalism that is presented creates an
tions plus two additional terms corresponding to the elec- electrostatic block with variance similar to that of the van
trostatic components of the desolvation free energy of both der Waals block, making the direct use of PLS analysis

the substrate and the enzyme: possible without invocation of scaling procedures, which may
N produce spurious results in three-dimensional QS8R (

AGy,= Zle”—i_ AGdesoIvS+ AGdesolvE (8) The PoissorBoltzmann equation was solved using a
n= finite difference method, as implemented in the DelT) (

module of Insight Il. The atomic coordinates that were
employed were those of the AMBER-optimized complexes.
The interior of the enzyme, the substrates, and the complexes
L g were considered a low-dielectric mediun=€ 4), whereas
o= 3322— (9) the surrounding solvent was treated as a high-dielectric
f=1er;; medium € = 80) with an ionic strength of 0.145 M. Cubic
grids with a resolution of 0.5 A were centered on the
where e is the relative permittivity of the homogeneous molecular systems that were considered, and the charges were
dielectric medium and; is the separation between every distributed onto the grid point$5, 56). Solvent-accessible
pair of atoms (as in the molecular mechanics force field) or syrfaces %8), calculated with a spherical probe with a 1.4
to include the potential created by the response of the A radius 69), defined the solute boundaries, and a minimum
surrounding solvent to the substrate charges, by solving theseparation of 10 A was left between any solute atom and
linear form of the PoissonBoltzmann equation: the borders of the box. The potentials at the grid points
_ _ 2 delimiting the box were calculated analytically by treating
VIe(F)Ve(P)] = —dp(T) + K*p(T) (10) each atom with a partial atomic charge as a Detiéckel
where p is the fixed solute charge distributio, is the ~ Sphere §5, 56).
modified Debye-Hiickel constant that accounts for a Boltz- Chemometric AnalysisThe program Q2 4.5.11 (Multi-
mann distribution of the ions in solution, ar¢f) and¢(r) variate Infometric Analysis) was employed for data pretreat-
are the dielectric constant and the electrostatic potential, ment, building of a model, and selection of variables by
respectively, as a function of position. The solvent-corrected fractional factorial design (FFD)6Q). The program SIM-
potential calculated with eq 10 can be either that generatedCA-P 8.0 (Umetri, Sweden) was used for permutation
by the charges on the enzyme at the positions of the validation §1). The quality of models is described by the
uncharged substrate atoms or, alternatively, that created bycorrelation coefficient R2), the cross-validated correlation
the Charges on the substrate at the location of each of thecoefficient QZ), the standard deviation of error of calcula-
uncharged atoms of the enzyme. It is the latter that we havetjons (SDEC), the standard deviation of error of predictions
computed for the purpose of calculating the residue—based(SDEpInt and SDER,), and the intercept of the permutation
contributions tdESS described in eq 7. Thus, the only effect plot for Q2 (INTCg?). R? and SDEC are the descriptors of

that is missed by this approach is the solvent polarization the quality of the fit and are given by egs 11 and 12,
created by the enzyme charges and its corresponding Crosgespectively.

terms. However, the consequence of ignoring this effect is
almost negligible when the complexes of a common receptor . 2
with a series of congeneric substrates are considered, as is Iz(yica'c Yiond
demonstrated below by the simil&ES values computed R=1-— (11)
with egs 4 and 8. _ 2
The latter two terms of egs 5 and 8, corresponding to the Iz(yi"bs Yimean
differences in electrostatic free energies of desolvation of
the substrate and enzyme upon complex formation, were Yicaie — Yiobd
calculated by considering the effects on the respective SDEC= Z— (12)
electrostatic free energies of replacing the high-dielectric | N
medium of the solvent with the low-dielectric medium of
the other molecule in those regions that are occupied by theR? takes values up to a maximum of 1, corresponding to a
binding partner in the complex. perfect fit. A value higher than 0.5 is generally considered
Each of the components of eq 8, which describes the statistically significantQ? characterizes the predictive ability
electrostatic effects of substrate binding, enters the energyof a model and was computed using the Leave One Out/
matrix for COMBINE analysis as a different variable. From Leave Some Out cross-validation according to eq 13.

The electrostatic potentials used in eqs 6 and 7 can be
calculated either as

1/2
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Z(yipred - yiobs)2 A2
@P=1-- (13) |
Z(yiobs_yimeal)2 ,_\1'5 e e = e
! 8 AT AT T T A AT
A value higher than 0.4 is generally considered statistically f: 1
significant. SDER; and SDERy quantify the error in 2 ..o - ° P A

prediction for test and validation sets, respectively, and are
standard deviations computed in a manner analogous to that 05 -

of SDEC. | |

INTCq2 is a measure of the backgrou@ obtained by \ |
model fitting with a randomizeyl variable (30 permutations 0 , ; ‘ — }
with random seed). Th& variable matrix contained 622 0 %0 100 150 200 250 300
columns (620 energy contributions for 310 amino acid time (ps)

residues and two energy contributions for the catalytic water g ¢ .
molecule) and 18 rows (enzymsubstrate complexes). The |
dependenty variable was represented by 18 logarithmic
values of experimental binding constaKts Three different
data pretreatment methods were applied to the energy
interaction matrix during the PLS analysis: centering only
(no scaling), block unscaled weights (BUW), and scaling to
unit variance (UV). A sum of squares higher tham1®as

the pretreatment threshold that was usedXarariables to

be considered active. This threshold served for elimination
of variables with low-magnitude energies and variance.
External validation was performed by splitting the data set
of the complexes into two subsets. The compounds were  5- ‘ ‘ ———
ordered according to lo, values and split into odd and 0 50 100 150 200 250 300
even values to obtain homogeneous data sets. One of them time (ps)

served as a test set (compourflst, 6, 8, 9, 13-15,and  Fgure 1: (A) Time evolution of the calculated density (grams
17), while the other was used as a training and validation per cubic centimeter) during the molecular dynamics simulations

AHvap (kcal/mol)

6,

set (, 3,5, 7, 10-12, 16, and18). of the solvent boxes: bromoetharisg, (exptl, 1.460), 1,2-dichlo-
roethane 4, exptl, 1.235), and acetonitril®( exptl, 0.786). (B)
RESULTS Time evolution of the calculated enthalpy of vaporizatioi(ap,

kilocalories per mole) during the molecular dynamics simulations
Parametrization of the HaloalkanesThe nonbonded  of the solvent boxes: bromoetharig, Exptl, 6.72), 1,2-dichloro-
parameters used in this work for the Cl and Br atoms and &thane &, exptl, 8.43), and acetonitrile®( exptl, 7.94). The
the cyano group present in the haloalkanes that were studieanpe”mental values are displayed as horizontal dashed lines.

were derived from condensed phase molecular dyn"’lmlcstesting the predictive power of the models (Table 3). External

simulations of three relevant organic solvents. The good validation of the models without scaling and the BUW-scaled
agreement found between the calculated and experimentally

measured densities and enthalpies of vaporization (Figureumno:eulisvgégﬂucerso\;c’i'(;g'I?r:eSt;;'::'Cssbggevzllatgscilﬁg ?;Z?Jils
1) lends credence to the validity of these parameters. The q yp : ’

derived parameters are provided in the Supporting Informa- however, does not seem consistent W't.h the fact that
tion. autoscaled models have low®f values and is presumably

Construction of COMBINE Model3he set of 18 enzyme a chance effect. Indeegkvalue p.erm.utation tests indicated
substrate complexes was modeled, and each complex wa he presence of charjce.correlatlon in the autoscaled models.
energy-minimized. The positions of the substrates inside the he chance correlauon s also apparent frqm Table 4. Many
active site after energy minimization are shown in Figure 2. of the best scoring energy contrlbutllons n the autoscajed
Different types of models were built using several scaling M°dels are not provided by the residues lining the active
methods. Th€)? value was used as the criterion to determine Site; and some of them are provided by residues on the
the optimal dimensionality of the PLS models. The FFD Protein surface.
variable selection procedure was then applied to all models Effect of Variable Selection on the Predi&iAbility. Two
using two different techniques (retaining uncertain variables types of FFD variable selection procedures were performed.
and not retaining uncertain variables). The complete set of FFD resulted in higherQ? values, indicating improved
PLS models with their statistical parameters is listed in Table internal predictive ability of the models (Table 2), but at the
2. same time resulted in low&? values, suggesting that some

Effect of Scaling on the Prediet Ability. The unscaled  of the variables that are important for explainikg were
models have statistical criteria similar to those of the BUW- excluded from the data set. The 24 variables retained in
scaled models (Table 2). The autoscaled models have highemodel 3 and the 23 variables in model 6 were sufficient for
R? values but significantly lowerQ? values, which is explaining 87% of the variance (77% cross-validated) in the
indicative of overfit. External validation was employed for K., values. External validation, however, confirmed the
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Ficure 2: Stereoview of the DhIA haloalkane dehalogenase in complex with ligands. The 18 ligands are superimposed in the positions
obtained from energy refinement. The protein backbone is represented dyrade (A). The side chains of first-shell residues lining the
active site that are identified as significant contributors to substrate specificity in COMBINE analysis are shown in stick representation, and
in a magnified view in panel B where they are labeled according to the DhIA sequence. The active site water molecule that is included in
the COMBINE analysis is shown as a sphere.

greater robustness of the models derived without variable replace the corresponding AMBER values in the COMBINE
selection (Table 3). energy matrix. To account for the change in the electrostatic
Effect of Surface Desahtion Energy on the Prediate energy of desolvation of the substrate and the enzyme binding
Ability. Inclusion of the surface desolvation energy term Site upon complex formation, two new variablégGgeson-
(Egeson-su) does not significantly improve the predictive andAGeesoi’, Were incorporated in the analysis as additional
ability of the models (models 1018) in comparison to the  terms. Addition 0fAGgeso- and AGgeson” into models with
ability of models without this term (models-B). Statistical ~ both AMBER electrostatic and van der Waals interactions
criteria for the models with and without surface desolvation did not lead to statistically better models (models-29).
terms are very similar (Table 2). The variatfesoi-sur The replacement of AMBER electrostatic interactions with
showed low weighted regression coefficients and was AGdeson: and AGgeson” terms led to models with improved
eliminated from the models that employed variable selection. predictive ability (models 2833). Addition of these two
Addition of Egeson-sur did, however, have a large influence terms to models with AMBER electrostatic interactions
on the number of variables retained after FFD variable replaced with the corresponding values from Poisson
selection. Boltzmann calculations slightly improves the predictive
Effect of Continuum Electrostatic Energy Terms on the aPility of the COMBINE models (models 4€4). The
Predictive Ability. Replacement of AMBER electrostatic Substrate desolvation energy term makes the most important
interactions with the enzymesubstrate interactions calcu- contribution to the first principal componentin these models.
lated by numerically solving the linearized Poiss@oltz- The desolvation energy of the enzyme is also among the
mann equation slightly improved bof and Q? (models five most significant energy contributions.
37—42; compare with models-16). Only the unscaled and Chemometric Analysis of Model 4 (BUW-Scaled, without
BUW-scaled models were taken into account in these FFD and Eeso,). The most influential variables are almost
comparisons since the chance correlation was detected earliethe same in the unscaled and BUW-scaled models (Table
in the autoscaled models. When the electrostatic term 4). Model 4 was chosen for detailed description because it
calculated using AMBER was replaced with the overall shows one of the best statistical parameters out of the models
electrostatic energy change upon binding calculated with based on per residue van der Waals and electrostatic
DelPhi (AGeie), @ Nnew set of global interaction energies was contributions. This model has four latent variables, yields
obtained. The residue-based electrostatic interaction energiesin R? of 0.91, aQ? of 0.73, and an SDER of 0.59, and
computed with DelPhi, as depicted in eq 7, were used to shows good external validation (Tables 4 and 5). Validation
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Table 2: Summary of the COMBINE Models
modef BUWP UV® FFD' Euw® Eod Edesovsu® Eeld® " AGgeson®’  AGgeson Objk var

3
Y
%
o
m
o)
o
%
o)
m
e

1 - - N + + - - - - 18 448 4 0911 0.342 0.728 0.596

2 - - R + + - - - - 18 436 3 0.893 0.375 0.734 0.590

3 - - E + + - - - - 18 24 2 0865 0420 0.770 0.548

4 + - N + + - - - - 18 448 4 0910 0.343 0.734 0.590

5 + - R + + - - - - 18 434 3 0.888 0.382 0.734 0.590

6 + - E + + - - - - 18 23 2 0.865 0420 0.774 0.543

7 - + N + + - - - - 18 448 4 0.959 0.198 0.649 0.576

8 - + R + + - - - - 18 232 4 0964 0.185 0.700 0.532

9 - + E + + - - - - 18 105 4 0.970 0.167 0.748 0.488
10 - - N + + + - - - 18 449 5 0.924 0316 0.722 0.603
11 - - R + + + - - - 18 445 3 0.885 0.388 0.704 0.622
12 - - E + + + - - - 18 7 2 0864 0421 0.774 0544
13 + - N + + + - - - 18 449 5 0.924 0.316 0.722 0.604
14 + - R + + + - - - 18 445 3 0.882 0.393 0.705 0.622
15 + - E + + + - - - 18 7 2 0.864 0421 0.774 0.544
16 - + N + + + - - - 18 449 4 0959 0.198 0.648 0.577
17 - + R + + + - - - 18 227 4 0.967 0.178 0.718 0.516
18 - + E + + + - - - 18 111 4 0.966 0.178 0.747 0.488
19 - - N + + - - + + 18 450 4 0.903 0.356 0.705 0.621
20 - - R + + - - + + 18 443 3 0.885 0.388 0.704 0.622
21 - - E + + - - + + 18 8 2 0.864 0421 0.774 0.544
22 + - N + + - - + + 18 450 6 0.939 0.283 0.779 0.538
23 + - R + + - - + + 18 439 3 0.885 0.388 0.704 0.622
24 + - E + + - - + + 18 7 2 0864 0421 0.774 0544
25 - + N + + - - + + 18 450 4 0.959 0.197 0.649 0.576
26 - + R + + - - + + 18 222 4 0.962 0.190 0.687 0.544
27 - + E + + - - + + 18 112 4 0.967 0.176 0.749 0.487
28 - - N + - - - + + 18 199 3 0.909 0.345 0.745 0.577
29 - - R + - - - + + 18 192 2 0.858 0431 0.733 0.591
30 - - E + - - - + + 18 7 2 0864 0421 0.774 0.544
31 + - N + - - - + + 18 199 4 0918 0.328 0.752 0.570
32 + - R + - - - + + 18 188 2 0.861 0427 0.745 0.578
33 + - E + - - - + + 18 7 2 0842 0455 0.741 0.582
34 - + N + - - - + + 18 199 3 0.842 0.386 0.494 0.692
35 - + R + - - - + + 18 117 3 0.858 0.366 0.677 0.553
36 - + E + - - - + + 18 45 2 0.817 0416 0.716 0.518
37 - - N + - - + - - 18 502 5 0.930 0.303 0.742 0.580
38 - - R + - - + - - 18 490 3 0.898 0.365 0.755 0.567
39 - - E + - - + - - 18 14 2 0.831 0.471 0.718 0.607
40 + - N + - - + - - 18 502 5 0.925 0.314 0.738 0.586
41 + - R + - - + - - 18 490 3 0.890 0.379 0.756 0.564
42 + - E + - - + - - 18 17 2 0.831 0.471 0.718 0.607
43 - + N + - - + - - 18 502 4 0924 0.269 0.581 0.629
44 - + R + - - + - - 18 269 4 0.913 0.286 0.467 0.709
45 - + E + - - + - - 18 171 4 0.954 0.208 0.556 0.648
46 - - N + - - + + + 18 504 5 0.933 0.297 0.731 0.593
47 - - R + - - + + + 18 497 3 0.898 0.365 0.709 0.617
48 - - E + - - + + + 18 6 3 0885 0387 0.788 0.527
49 + - N + - - + + + 18 502 5 0.922 0.320 0.733 0.590
50 + - R + - - + + + 18 491 3 0.889 0.381 0.696 0.630
51 + - E + - - + + + 18 9 2 0.864 0421 0.774 0.544
52 - + N + - - + + + 18 504 4 0924 0.268 0.580 0.630
53 - + R + - - + + + 18 269 4 0933 0.252 0477 0.703
54 - + E + - - + + + 18 172 4 0945 0.227 0.549 0.653

aModel identifier.? Block unscaled weights.Scaling to unit variance! Fractional factorial design (FFD): N, without FFD; R, FFD with retained
uncertain variables; E, FFD with excluded uncertain varial§lean der Waals energy contributions from AMBERfatrix). ' Electrostatic energy
contributions from AMBER X matrix). 9 Surface term of desolvation energy in thenatrix. " Enzyme-substrate interaction energy in the presence
of the surrounding solvent in thé matrix. ' Change in desolvation energy of the substrate upon binding i tinatrix. Change in desolvation
energy of the enzyme upon binding in tkematrix. * Number of objects' Number of variableX after threshold applicatiorf: Number of latent
variables.

by permutation confirms no chance correlation in the model. electrostatic interaction energy of Aspl124, 124This
The robustness of this model is further supported by the factcomponent is most important for explaining the variance in
that a very similar model is derived when COMBINE the binding affinities of compoundsl, 12, and18 (listed in
analysis is performed for the same structures with different order of decreasing significance). The most important
software (the COMBINE program, A. R. Ortiz) with slightly  variable in the second principal component is the van der
different pretreatment and cross-validation procedures (datawaals interaction energy of Trp125, ¥2% This component
not shown). Score plots for model 4 are shown in Figure 3, is particularly important for explaining the binding affinity
while the loading plots are shown in Figure 4. The most of compoundsl3 and14. In the third component (focused
important variable in the first principal component is the on compoundg, 5, 4, 8, 10, 14, and18), the most significant
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Table 3: Externd Validation and Permutatio Tes of COMBINE
Models

modef objp var Ad

R? SDEC Q> SDERy SDERy INTCg

1* 9 444 4 09% 0.143 0.742 0.587 0.561 —0.02
2* 9 425 3 098 0.166 0.879 0.401 1.008 —0.08
3* 9 16 3 098 0.1%7 0.924 0.318 0.973 -0.11
4* 9 444 4 0.981 0.1 0.738 0.590 0.629 —0.05
5* 9 42 3 098 0.1 0.890 0.383 1.003 —0.07
6* 9 15 3 098 0.157 0.924 0.318 0.973 0.01
™ 9 444 4 098 0.1B 0.544 0.662 0.559 0.39
8* 9 204 4 0.9% 0.0 0.729 0.510 0.537 0.29
9* 9 105 4 0.98 0.048 0.846 0.385 0.589 0.37

@ Modd identifier. The numbe correspondto the modek presented
in Table 2. An asteri& indicates tha only haff of the objecs were
usal in a model.® Numbe of objecs in a model Working set 2, 4,
6, 8,9, 13—15, ard 17. Validation set 1, 3,5, 7, 10—12, 16, and 18.
¢ Numbe of variables X after threshotl application. Numbe of latent
variables.

variables are 2634w, 1729w, 2269 175 and 1259, In
the fourth componen(which explairs the varian@ in binding
affinity of compound5, 1, 6, 9, 4, 2, 18, ard 17), variables
226" and 1724 are mog influential. The overal impor-
tane of ead variabke in modd 4, as quantified by the
weightel regressia coefficients is presentd in Figure 5.
The goodnes of fit and externa predictive ability of the
modé are presentd in Figure 6. A stereovi& of the energy
contributiors selected by COMBINE analyss with the
assignd type of energ contributiors is shown in Figure 7.
A picture illustrating unfavorabé interactiors betwea long
substrag@ molecules (butanes and hexanepy and Trpl75
togethe with positive interactiors of thee molecules with
three amino acid residus (Leu263 Met152 and Cys150)
on the opposit side of the active site is shown in Figure 8.

Externd Predictiors of Binding Affinities for Mutant
Proteins The applicability of the COMBINE modek for
predictiors was validated using two mutans of DhIA for
which the crysta structure were determine (19, 20). Four
substrag@ molecules with availabk experimenth binding
constang were modelel in the active sites of the mutant
proteins The experimentbbinding constars were calculated
only for modek with the beg SDER; values (modek 4and
40). Although the internd predictive ability of mode 49 was
as goad as that of modé 40, modé 49 led to significantly
worse externa predictions The trends in the changs of
binding affinity due to mutatian are predictel correctly using
both modé 4 ard modé 40 without exception (Table 5).
The larges erra was obtainel for the substra¢ 1-bromo-2-
chloroethangbut thisis not unexpectd since the prediction
is mace for both a new substra¢ and a new enzyme.
Generally the predictiors made using modé 4 and model
40 are equivalet as shown by their SDERy: values (0.66
ard 0.67, respectively).

DISCUSSION

Rationd engineerig of enzyme substrag¢ specificity
requires detailed knowledge of the interactiors taking place
betwea the enzyme and the substrate at atomic resolution.
Interaction energis basel on molecula mechanis calcula-
tions are employeal for the study of enzyme-substrate
interactiors in comparatie binding enery (COMBINE)
analyss (7). In this study, the applicability of COMBINE
analyss for proten engineerig purposs has bee investi-

Kmunicek et al.

gated COMBINE analyss was conducte for 18 substrates
of the haloalkar dehalogenasDhIA. The effed of scaling,
variabke selection and addition of desolvati energy terms
on the predictive ability of the resultig modek was
investigatedNo scalirg and BUW-scalirg procedurs pro-
vided robug modek with goad predictive ability (Q> = 0.72
ard SDER,; < 0.59) while autoscalig resultel in models
with chane correlation.

Variable selection demonstrate that the energ contribu-
tions from only a limited numbe of amirno acid residues
(1%) are sufficiert to explan a large proportian of the
varian@ (91%) in the binding constants The models
retainirg all energ contributiors after applyirg pretreatment
threshold showel very godd fittin g properties ard predictive
ability, and it was concludel that variabk selectio proce-
dures (i.e., exclusio of the nonsignificam variables from
the data matrix) are not necessar for modelirg the DhIA—
substrag binding affinities. Apparently PLS was effective
enoudn to filter out nonsignifican interaction energ con-
tributions by giving them smal weighting coefficients The
inclusian of a surfa@ area dependendesolvatio energ term
did not improve the predictive ability of the models The
inclusian of the electrostati enzyme-substrag interactions
computel by numericé solution of the Poisson-Boltzmann
equatia improved the quality of the modek ard resultel in
a COMBINE modé tha achievel very goad predictive
ability (Q? = 0.74, SDER,; = 0.59 SDERy = 0.67) The
incorporation of two additiona terms representig the
electrostati energ contributiors to the partid desolvation
of the substrate and the enzyme upan binding, resultel in
aCOMBINE mode with goad fittin g properties (Q° = 0.78)
that provided goad internd predictiors (SDER,; = 0.54) and
slightly worse predictiors for objecs nat included in model
developmenh(SDERy; = 0.82).

A mechanisti interpretatiom of the modek tha were
constructd provides adetailel understandig of the structue—
affinity relationshi of DhIA substratesThe BUW-scaled
modd containirg van de Waak and electrostat energy
terms for evel residie (modé 4) was chose for this
purpose Simultaneos examinatio of the scoe plots (Figure
3), loading plots (Figure 4), weightel regressia coefficients
plot (Figure 5), ard the structures of enzyme-substrate
complexes (Figure 7) enables identification of important
interactiors betwee the substra¢ molecule ard amiro acid
residus that are key to understandig the differences in
affinity. We exped that knowledee of thes interactiors can
be usal advantageouglto propog mutart enzyme with
modified specificities It is appareh from COMBINE
analyss tha only a limited numbe of interactiors are
importart for explainirg mog of the differences in binding
amory the substrate of DhIA. van der Waak interactions
are considerab} more importan than electrostat: interac-
tions This resut can be rationalizel for the haloalkane
dehalogenasDhIA becaus its active site is small being
evolutionariyy optimized for the naturd substrate 1,2-
dichloroethanewherea modg of the substrate analyza in
this study hawe a volume large than tha of 1,2-dichloroet-
hane resultig in a numbe of close contacs betwea the
ligands and the enzyne active site Furthermore the sub-
strates that were analyza are simple unchargegdand mainly
hydrophobt moleculesExperiene from studyirg different
series of inhibitors interactirg with differert proten structures
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Table 4: Most Importart X Variable$ in COMBINE Models

modé 1 modé 2 modé 3 modd 4 modé 5 modé 6 modé 7 modéd 8 modé 9
172vdw 124vdw 124vdw 1254w 124vdw 124vdw 164vdw 1259w 1254w
1257dw 1257dw 125/dw 1720dw 1257dw 1257dw 172vdw 164vdw 120/dw
164vdw 172vdw 164vdw 164w 172vdw 164/dw 125/dw 1209w 1269w
124vdw 164vdw 1720dw 1244w 164/dw 172vdw 171vdw 1459w 164w
22vdw 175dw 224w 22vdw 1757w 22vdw g7ele 1267w 97ele
1754w 289/dw 289/dw 1759w 28gdw 28gdw 261vdw g7ele 1720dw
128/dw 22vdw 1759w 128w 22dw 1759w 196/dw 1720dw 171vdw
289rdw 223vdw 262/dw 289dw 223vdw 176 12g/dw 171vdw 196w
223vdw 125l 176 223dw 1250 293l 173/dw 127vdw 121¢le
2264w 260 293l 226/dw 260 64ele 1754w 261vdw Seele
263w 176 64ee 263vdw 176 168/dw 12Qdw 1309w 261vdw
262vdw 226 1684w 262dw 226 167vdw 145/dw 196w 189dw
124 172l 167vdw 124l 262dw 27 1vaw 189/dw 128/dw 128/dw
179dw 175 27 1vdw 1799w 172 230 168/dw 121ele 273k
125 262vdw 230 125 175 2971ele 104vdw 1759w 104vdw
1769w 179dw 297ele 1769w 179dw 116 184vdw 104vdw 203rdw
172 263l 116 172 176w 7%l 203/dw 184vdw 184vdw
226 311ele 72l 2260 263l 2428 17Q/dw 203/dw 163
260 164 2448k 56vdw 164 134vdw 1267w 1734w 1759w
176 176/dw 61ele 2600 3171ele 61ele 174vdw 57ele 173vdw
5evdw 128/dw 134vdw 224dw 128/dw 274w 167vdw 122vdw 57ele
224w 262 274w 176 149/dw 5Qvdw 121¢e 18%le 24k
2604w 149dw 5Qvdw 2604w 262k 104 57ele 189dw 281vdw
1654w 55ele 104le 1659w 2604w - 2609w 1744w 28vdw
57vdw 2248l — 57vdw 55ele - 18%le 123vdw 287dw
vadw first shelP 12 9 7 12 9 6 5 5 4
elefirst shelf 3 7 0 4 4 0 0 0 0
vdw secoml shelP 7 4 7 7 5 7 16 16 14
ele secom shelP 3 5 10 2 7 10 4 4 7

aVariables are sortal accordirg to absolué values of weightal regressia coefficiens (only 25 top scorirg variables are listed); first-shell
residus arein bold. ® Numbe of first-shel residus displayirg van der Waak type interactions¢ Number of first-shel residus displayirg electrostatic
type interactions® Numbe of second-shélresidus displayirg van der Waak type interactions® Numbe of second-shélresidue displaying

electrostati interactions.

Table 5: Externd Predictiors of Steady-Stag Dissociation
Constarg for Haloalkare DehalogenasMutanis Using Models 44
ard 40°

wildtype Phel72Trp

no2 substrate expt expt® predictiorf! predictiort
2" 1-chlorohexane 1.40 0.57 0.22 0.28
6' 1,2-dichloroethane 0.53 5.13 8.47 8.83
8 1,2-dibromoethane 0.01 0.03 0.20 0.20
19 1-bromo-2-chloroethan 0.07 0.10 1.28 1.38
wild type Trpl75Tyr
no2 substrate expt  expt predictiorf predictiort
6" 1,2-dichloroethane 0.53 2.85 0.83 0.73
8" 1,2-dibromoethane 0.01 0.06 0.04 0.03

@A single prime correspond to Phel72Trpand a doubk prime
correspond to Trpl75Tyr.? From ref 20. € From ref 19.

by COMBINE analyss (7—12) indicates that ther is nat a
single trerd acros all systems and tha the dominating
interactiors depeml on the physicochemidafeatures of the
variatiors in the ligand series and the characteristis of the
protei binding site. Examinatio of the weighted regression
coefficiens plot reveas tha mog of the importart van der
Waak interactiors show positive coefficiens with only one
exception Trp125 Most of the electrostati interactiors show
negative coefficiens as a resut of covariatiors in the
behavio of the variables In thos cass where electrostatic
desolvatim energy is apenaly to binding and importart for
explainirg differences in activity, there will be some
electrostatt interactiors in the binding site tha will correlate
with the desolvatio energy The® interactiors will be
detecte by COMBINE analyss as opposiry binding, even
thoudh their individud contributian is favorabk to binding.
COMBINE analyss is therefoe detectirg an overal unfa-
vorabk electrostati desolvatio effed tha the favorable
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Ficure 3: Scoe plots for latert variables t; vst, (A) and tz vsty
(B) for modé 4. The objecs (compoundgare numbere according
to Table 1.

electrostats interactiors within the binding site are unable
to overcome The coefficiens in modek including explicit
desolvatim terms corroborag this interpretation.
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B os FIGURE 6: Plot of observed vs predictetl, values for model 4.
The objects (compounds) are numbered according to Tables 1 and
4 226" 5. Compounds from the working (training) set are represented as
A 72 white squares, and compounds from the prediction set are repre-
0.4 2Ky sented as triangles (the white triangle represents a prediction made
AAzzzvjfw for a complex of a new substratsd a new mutant enzyme). A
we, p— 324;%2&\,%4 - single prime corresponds to the Phe172Trp mutant, and a double
450w aA223 prime corresponds to the Trp175Tyr mutant.
164
0.0 A ¥ . .
A 1257 A4 4289 w reaction by nucleophilic attack on the carbon atom bonded
A 128V A 175V:ersvdw to halogen in a substrate molecul&(25). This attack leads
a 56" to formation of a covalent alkylenzyme ester and a halide
0.4 ‘ ; ‘ ion. Asp124 is positioned on a nucleophile elbdlM)(and
0.4 0 0.4 0.8 12 points toward the active site cavity.
wC, The aromatic ring of Phe128 displays steric hindrance with

epichlorohydrine, epibromohydrine, 1,2-dichloropropane,

Ficure 4: Loading plots of wgvs we (A) and wg vs wg (B) for - ) '
model 4. Selected variables (energy contributions) are numbered2-chloroacetamide, and 2-bromoacetamide in the second

according to the DhIA sequence.

-
o

172vW 222vW

bt
o
.

125%°

component. We noted that the much smaller Ala is present
in the equivalent position of dehalogenases LinB and DhaA
(37). Both enzymes exhibit better activity withsubstituted

; w184 2235, haloalkanes than DhIA. Substitution of Phe128 with a smaller
ww  |175YW 263+ ; ; ; ST s
128 T3gvw 262" amino acid may result in enzymes with improved affinity
0.5 29" for f-substituted substrates.
‘ L ] van der Waals energies of Leu263, Phel72, Val226,
o " . Trpl75, Trpl25, Cys150, and Metl52 are among the most
1oace 172 226% significant interactions in the third component. Leu263 makes

unfavorable contacts with the two largest substrates in the

data set, namely, 1-bromohexane and 1-chlorohexane. A
smaller amino acid in position 263 may improve the affinity
for long-chain substrates. Both Cys150 and Met152 have the
opposite effect on binding long-chain substrates. The van
) ) o der Waals interaction energy of Cys150 with substr&es
FiGURE 5: Plot of weighted regression coefficients for model 4. 504 4 is 1 order of magnitude lower than with other
Selected variables (energy contributions) are numbered according . .
to the DhIA sequence. substrates. Trpl75 makes direct van der Waals contact_W|th
the halogen substituent of all substrates and provides

The van der Waals interactions with positive coefficients stabilization in a manner similar to that of Trp12EB). Most
can also be explained on a physical basis. Better van derof the substrates interact with Trp175 favorably, but 1-bro-
Waals interactions result in better binding affinity. Most of mohexane, 1-chlorohexane, 1-bromobutane, and 1-chlorobu-
the residues with positive van der Waals contributions line tane make unfavorable van der Waals contacts with Trp175
the active site cavity (Table 4 and Figure 7). Those further HN.;. Mutagenesis of Trpl75 results in proteins with low
away may be explained by general improvement in packing. activity (19, 28); therefore, improved binding for these
These residues explain most of the third and fourth principal substrates can only be achieved by mutations in neighboring
components but also contribute to the first and second residues (helix 5). Nine of 12 in vivo mutants of DhIA with
components. improved activity toward 1-chlorohexangQj carried modi-

A favorable van der Waals interaction of Aspl24 is fications in helix 5 or its close surroundings. Priest and co-
observed for the substrates 1-chlorohexane, 1-bromohexaneworkers suggested that this region is critical for the specificity
1,2-dibromoethane, and 1,2-dibromopropane, while unfavor- of DhIA. This observation is in line with the COMBINE
able interactions are observed with 2-chloroethanol, 2-bro- model which localizes seven highly significant interactions
moethanol, and 2-bromoacetamide in the first component.in helix 5 (Table 4 and Figure 7). The importance of Val226
Aspl24 is a nucleophile that initiates the dehalogenation could not be directly attributed to the binding of specific

'
-
L

125"

Weighted regression coefficients

a
(5]

Variable number
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Ficure 7: Stereoviev of DhIA with assignd energy contributions The proten backbor is representg by the Ca trace The Ca atoms
of the residues showirg the mog importart energ contributiors in modé 4 are shown as balls (see Table 4). Dark-colorel residus have
only van de Waak energy contributions while light-colored residue hawe both van der Waak ard electrostati energ contributions The
substrag molecules are in the positiors obtainel from energy minimization.

Trp175, Trp17%

a Leu263 Leu263

FiGure 8: Stereoviev of the substra¢ molecules dockel in the
enzyne active site Unfavorabé van der Waak interactiors between
long-chan substratesi.e., butans ard hexanesard Trpl7s are
representg by van der Waak surface of interactirg atoms.
Favorabé interactiors of the same long-chan molecules with

Leu263 Met152 ard Cys1® positiona&l on the opposit side of

the active site can be seen.

substratesThis residie is not in dired contad¢ with the
substrae molecules but makes importart interactiors with
Trpl2 and Phel72 The importane of the interactions
has been experimentall demonstrate by Schanstand co-
workers (29). Many interactiors significart for the third
componeh also participae in the fourth component for
example Val226 Phel72 Phe222 Glu56, Leu263 or
Trpl75 Phel?2 contributes to stabilization of the transition
stat and the produd (32, 62). Schanstard co-workes (20)
performal mutationd analyss at position 172 and con-
structel 16 different point mutants sorme of which had
modified activity and substrag range Quantitative structure-
function relationshp (QSFR analyss conducte with the
sane se of point mutans identified physicochemidaproper-
ties critical for position 172 aromaticity main-chan flex-
ibility, refractivity, and bulkines (63). Like Trpl17 and
Leu263 Phel? al makes unfavorabé van der Waals
interactiors with the long-chan substrate 1-bromohexane
ard 1-chlorohexanePhel?2 is amorg the mog important
residus of DhIA as it displayel both significart van der
Waak and electrostatt interactions.

Two of the interactiors with negative coefficients Asp124'
and Trp1259, are very importart for the first and second
componentrespectively Asp124'¢ togethe with the sub-
strak electrostat desolvatio term dominate the first
componenof the modé employirg both AMBER-calculated
electrostati interaction energis and the chang in the

electrostati desolvatio enery of desolvatim of the sub-
strak ard the enzyne upan complex formation (e.g, model
22). The variables 124" and AGgesoiy are negativey cor-
related in this modé and explan mainly the variability in
the dissociatim constans for the substrate 2-bromoaceta-
mide, 2-chloroethangland 2-bromoethanolDesolvatio of
thes pola moleculss is energeticall demandingresulting
in poa binding affinity. The negatiwe coefficiert of Trp125
can be attributed to adifferert behavia of the enery changes
associaté with this residie in comparisa with the reg of
the variables This can be observe in the partid weights
ard loading plots rathe than in a differert slope in the
correlation with the externavector. The differene may have
a structura origin, since Trpl2 is locatel in aloop buried
in the proten core while mog of the reg of the important
interactiors are associaté with a-helices Trp12 appears
to be importart for explainirg difference betwea chlori-
natel and brominatel derivatives The essentih role of
Trpl25 for binding of the halogen substituentstabilization
of the transition state and halide ion releag upon reaction
has been postulatel from crystallographi and fluorescence
quenchig studies (64), from site-directel mutagenesis
experimend (28), ard from molecula modelirg (32, 36).
The electronegatig aromatt indole nitrogers of the tryp-
tophars provide polarization of the N—H bond resultirg in
a slightly positive hydrogen tha can intera¢ with the
halogen.

In summary the mog influentid active site residue can
be divided into two classeswith respetto their interaction
with the substratesThe first class is formed by residues
separatig chlorinatel derivates from brominatel derivates.
Thes residus include Trpl125 Trpl75 and Pro223 and
form the halogen binding site in the protein which is more
selective for brominatel derivatives Mutations affecting
thes residus shoutl be usal to modulae the halogen
specificity of the enzyme The secom sd of residues
discriminate substrate by ther interactiors with the substrate
alkyl side chain.
and Leu263 ard thereisacontributian from Aspl24 aswell.
Mutatiors affecting thes residue can be usel to tune the
activity of the enzyne for different side-chan specificities.

All amino acid residue discussd so far belorg to the so-
called first shel of residuesi.e., residus lining the active

It includes Phel64, Phel72, Phe222,
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site of DhIA. Therr significan@is not unexpectd since these
residus make dired contacs with the substra¢ molecules
ard their possibe role could be inferred from the X-ray
structure The identification of second-shélresidua might
be more usefu for proten design purposesin DhIA, such
residus were alo identified with the COMBINE models
ard include Phe222Leul79 Lys176 Lys224 Vall165 and
Pro5/ (listed in orde of their significance see Table 4).
The® residus represeh suitabke targes for future site-
directel mutagenesiexperiments.

SUPPORTING INFORMATIO N AVAILABLE

Parametes derived for halogenaté compounds This
materid is availabk free of charge via the Interne at http://
pubs.acs.org.
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