

FINAL STRUCTURE ?

Homology Modelling: a computational method for modelling the structure of a protein based on its sequence similarity to one or more other proteins of known structure.

Sali, A. & Kuriyan, J. *Trends Biochem. Sci.* **1999**, *22*, M20-M24

Sample models and corresponding experimental structures

LOW SEQUENCE IDENTITY DOES NOT NECESSARILY IMPLY LOW STRUCTURAL HOMOLOGY

GFP/RFP: 25% ID

GFP	MGKGEELFTGVVPILVELDGDVNGHKFSV
RFP	MRSSKNVIKEFMRFKVRMEGTVNGHEFEI
GFP	SGEGEGDATYGKLTLKFICTT.GKLPVPW
RFP	EGEGEGRPYEGHNTVKLKVTKGGPLPFAW
GFP	PTLVTTFSYGVQCFSRYPDHMKRHDFFKS
RFP	DILSPOFOYGSKVYVKHPADIPDYKKL
GFP	AMPEGYVQERTIFFKDDGNYKTRAEVKFE
RFP	SFPEGFKWERVMNFEDGGVVTVTQDSSLQ
GFP	GDTLVNRIELKGIDFKEDGNILGHK.LEY
RFP	DGCFIYKVKFIGVNFPSDGPVMQKKTMGW
GFP	NYNSHNVYIMADKQKNGIKVNFKIRHNIE
RFP	EASTERLYPRDGVLKGEIHKALK
GFP	DGSVQLADHYQQNTPIGDGPVLLPDNHYL
RFP	DGGHYLVEFKSIYMAKKPVQLPGYYYV
GFP	STQSALSKDPNEKRDHMVLLEFVTAAGIT
RFP	DSKLDITSHNEDYTIVEQYERTEGR
GFP	HGMDELY
RFP	HHLF

Comparative modeling

 \checkmark helps to bridge the gap between the available sequence and structure information

 \checkmark is based on the general observation that evolutionarily related sequences have similar three-dimensional structures

✓ allows building of a three-dimensional model of a protein of interest (target) from related protein(s) of known structure [template(s)] that share statistically significant sequence similarity.

Comparative modeling

Several consecutive steps are usually repeated iteratively until a satisfactory model is obtained:

- \checkmark finding suitable template protein(s) related to the target
- ✓ aligning target and template(s) sequences
- ✓ identifying structurally conserved regions
- ✓ predicting structurally variable regions, including insertions and missing N and C termini
- ✓ modelling sidechains
- \checkmark refining and evaluating the resulting model.

COMPARATIVE MODELLING

CPHmodels Tools (http://www.cbs.dtu.dk/services/CPHmodels/) Sowhat: A neural network based method to predict contacts between C-alpha

atoms from the amino acid sequence.

RedHom: A tool to find a subset with low sequence similarity in a database. Databases: Subsets of the Brookhaven Protein Data Bank (PDB) database with low sequence similarity produced using the RedHom tool.

SDSC1 (http://cl.sdsc.edu/hm.html) Sequence similarity search using intermediate sequence search concept.

SWISS-MODEL (http://www.expasy.ch/swissmod/SWISS-MODEL.html) An Automated Comparative Protein Modelling Server

3D-JIGSAW (http://www.bmm.icnet.uk/servers/3djigsaw/)

Server that builds three-dimensional models for proteins based on homologues of known structure

SWISS-MODEL

An Automated Comparative Protein Modelling Server

http://swissmodel.expasy.org//SWISS-MODEL.html

MENU

Modeling requests:

- First Approach mode
- <u>Alignment Interface</u>
- Project (optimise) mode
- Oligomer modeling
- GPCR mode

Model Database

• <u>SWISS-MODEL Repository</u>, a database for theoretical protein models.

Interactive tools

- <u>DeepView Swiss-PdbViewer</u>, a tool for viewing and manipulating protein structures and models.
- <u>SWISS-MODEL Workspace</u>, an interactive working environment for protein structure modelling and assessment.
- Lookup the ExPDB template codes
 accessible to SWISS-MODEL.
- <u>Search</u> the template sequences accessible to SWISS-MODEL.
- <u>Examples</u> using SWISS-MODEL and the Swiss-PdbViewer.
- <u>ANOLEA</u> Protein structure quality check (atomic non-local environment assessment)
- <u>News</u> from Swiss Model.

Other links

- <u>3DCrunch</u>, a very large scale protein modeling project.
- Other <u>Web-based</u> Comparative Protein Modeling Servers.
- <u>Course</u> on protein structure and comparative modeling.
- <u>PHYRE</u>, fold recognition server at the ICRF.
- <u>PredictProtein</u>, Burkhard Rost's sequence analysis and structure prediction server.

Comparative modeling

Most crucíal determinants of final model quality:

 \checkmark optimal use of structural information from available templates

✓ correctness of sequence-to-structure alignment

Multiple alignments: how can similarity be quantified?

				e-binding	Loop	Sw	itch I	_					tch II
		B1		1 20	A1	30		40	B2	L3 50	B3	60 L4a	L4b 70
RhoA	1	MAAIRKKL											
RhoB	ĩ	MAAIRKKL											
RhoC	1	MAAIRKKL											
Rac1	1											NDTAGOED	
Rac2	1											NDTAGOED	
Cdc42	1	MOTIKC	VVVGDGA	AVGKTCL	LISYT	TNKFP	SEYVP	TVFDN	YAVTVI	IGGEP	YTLGL	FDTAGQED	YDRLR
K-Ras	1	MTEYKL	VVVGAGO	GVGKSAL	TIQLI	QNHFV	DEYDP	TIEDS	YRKQV	IDGET	CLLDI	LDTAGQEE	YSAMR
N-Ras	1	MTEYKL	VVVGAGO	GVGKSAL	TIQLI	QNHFV	DEYDP	TIEDS	YRKQV	IDGET	CLLDI	LDTAGQEE	YSAMR
H-Ras	1	MTEYKL	VVVGAGO	GVGKSAL	TIQLI	QNHFV	DEYDP	TIEDS	YRKQV	/IDGET	CLLDI	LDTAGQEE	YSAMR
		B1	and the second second		A1				B2		B3		H1
		H2 L5	80 B4	L6 90		A3 100		L7 1	10 B5	L8a 120	H3 L8b	A3'130	LSC
RhoA	71	PLSYPDTD		IDSPDS			EVKHF						MKOEP
RhoB	71	PLSYPDTD											
RhoC	71	PLSYPDTD											
Rac1	69	PLSYPOTD	VFLICES	SLVSPAS	FENVR	AKWYP	EVRHH	C-P-N	TPIIL	GTKLD	LRDDKI	DTIEKLKE	KKLTP
Rac2	69	PLSYPQTD	VFLICFS	SLVSPAS	YENVR	AKWFP	EVRHH	C-P-S	TPIIL	GTKLD	LRDDKI	DTIEKLKE	KKLAP
Cdc42	69	PLSYPQTD											
K-Ras	69	DQYMRTGE											
N-Ras	69	DQYMRTGE											RT
H-Ras	69	DQYMRTGE		AINNTKS			QIKRV	KDSDD			LAA		RT
		A2	B4		1	43			B5				
					0.0								
		140 A4	150 L	9 B6	160 L1	0 1	70 A5	1	80			190	
RhoA	139	VKPEEGRD	MANRIGA	AFGYMEC	SAKTK	DGVRE	VFEMA	TRAAL	QARRGI	KKKSG-		CLV	L
RhoB	139	VRTDDGRA	MAVRIQA	AYDYLEC	SAKTK	EGVRE	VFETA	TRAAL	QKRYG	SQNGCI	NC	CKV	L
RhoC	139	VRSEEGRD	MANRISA	AFGYLEC	SAKTK	EGVRE	VFEMA	TRAGL	QVRKNI	KRRRG-		CPI	L
Rac1		ITYPQGLA											
Rac2		ITYPQGLA										CSL	L
		IT PETAEK										CVL	
K-Ras	125	VDTKQAQD	LARSYGI	I-PFIET	SAKTR	QRVED	AFYTLY	VREIR	QYRLKI	KISKEE	KTPGC	VKIKKCII	М
		VDTKQAHE											
H-Ras	125	VESRQAQD	LARSYGI		SAKTR	QGVED		VREIR	QHKLRI	KLNPPD	ESGPG	CMSCKCVL	S
		A4		B6			A5						

Finding suitable template protein(s) related to the target

PSI-BLAST, etc

Profile-profile comparisons NAR (2005) 33:1874-1891

Aligning target and template(s) sequences

✓ Advantages of consensus strategies based on multiple templates or protein fragment recombination

 ✓ Benefits from extensive literature searches for any available biochemical information (mutations, catalytic residues, etc) that can lead to alignment anchors and improve the sequence-structure mapping in questionable regions

	A. Fiser, R.K.G. Do and A. Sali, Prot Sci, (2000) 9, 1753-1773 (APDF) A. Fiser, and A. Sali, Bioinformatics,(2003) 18, 2500-01 (APDF)
	A. Fiser, and A. San, Biomormatics,(2005) 18, 2300-01
	or automated modeling of loops in protein structures. The server relies on the loop modeling predicts the loop conformations by satisfaction of spatial restraints, without relying on a structures.
Uple	pad your coordinate file : Examinar
	ect loop segments :
300	
Nan	ne of your model : loop
htt	cp://alto.compbio.ucsf.edu/modloop/
Modeling side	chains
Modeling side	chains View of the second seco
Modeling side	chains View of the second seco

conformations are **optimised in rotamer space** using a rough potential energy function to avoid clashes

L. Holm, C. Sander (1991) J. Mol. Biol. 218:183-194

http://www.ebi.ac.uk/maxsprout/

Modeling sidechains

✓ Even in dihedral angle space, the conformational space accessible to all sidechains of a protein remains very large.

✓ In most existing methods for modelling sidechain conformation, sidechain conformation space is discretized, i.e. a sidechain is allowed to adopt only a discrete set of conformations.

✓ This approximation is based on the observation that, in highresolution experimental protein structures, side-chains tend to cluster around a discrete set of favored conformations, known as rotamers.

✓ In most cases, these rotamers correspond to local mínima on the sídechain potential energy map.

For a review: Vasquez, M. Modeling sidechain conformation. *Curr. Opin. Struct. Biol.* 6, 217-221 (1996)

Protein sidechain conformation - Rotamer libraries

- Ponder JW and Richards, FM. Tertiary templates for proteins: use of packing criteria in the enumeration of allowed sequences for different structural classes. *J. Mol. Biol.* 193, 775-791 (1987).

http://www.fccc.edu/research/labs/dunbrack/sidechain/ponder_richards.rot

- Dunbrack, RL and Karplus, M. Backbone-dependent rotamer library for proteins : application to side-chain prediction. *J. Mol. Biol.* 230, 543-574 (1993). Dunbrack, RL and Cohen, FE. Bayesian statistical analysis of protein side-chain rotamer preferences. *Protein Sci.* 6, 1661-1681 (1997).

http://www.fccc.edu/research/labs/dunbrack/sidechain.html

- Tuffery, P, Etchebest, C, Hazout, S and Lavery, R. A new approach to the rapid-determination of protein side-chain conformations. *J. Biomol. Struct. Dyn.* 8, 1267-1289 (1991).

http://bioserv.rpbs.jussieu.fr/doc/Rotamers.html

- DeMaeyer, M, Desmet, J and Lasters, I. All in one: A highly detailed rotamer library improves both accuracy and speed in the modelling of sidechains by dead-end elimination. *Folding & Des.* 2, 53-66 (1997).

http://www.fccc.edu/research/labs/dunbrack/sidechain/demaeyer.rot

- SC Lovell, JM Word, JS Richardson and DC Richardson. The Penultimate Rotamer Library" *Proteins: Structure Function and Genetics* 40, 389-408 (2000).

http://kinemage.biochem.duke.edu/databases/rotamer.php

The user provides an **alignment** of a sequence to be modeled with known related structures and MODELLER automatically calculates a model containing all non-hydrogen atoms. MODELLER implements comparative protein structure modeling by **satisfaction of spatial restraints**, and can perform many additional tasks, including *de novo* modeling of loops in protein structures, optimization of various models of protein structure with respect to a flexibly defined objective function, multiple alignment of protein sequences and/or structures, clustering, searching of sequence databases, comparison of protein structures, etc.

FOLD RECOGNITION & THREADING METHODS

3D_PSSM (http://www.sbg.bio.ic.ac.uk/~3dpssm/)

A Fast, Web-based Method for Protein Fold Recognition using 1D and 3D Sequence Profiles coupled with Secondary Structure and Solvation Potential Information.

02-2-110

PHYRE (http://www.sbg.bio.ic.ac.uk/~phyre/)

Protein Homology/analogy Recognition Engine

FUGUE (http://www-cryst.bioc.cam.ac.uk/~fugue/)

Sequence-structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties

LOOPP (http://ser-loopp.tc.cornell.edu/loopp.html)

Learning, Observing and Outputting Protein Patterns (LOOPP)

Superfamily (http://supfam.mrc-lmb.cam.ac.uk/SUPERFAMILY/)

Protein domain assignments to SCOP structural superfamilies using a hidden Markov model library.

Bioinformatics Unit

<u>McGuffin home></u> <u>Bryson home></u> Jones home>

The PSIPRED Protein Structure Prediction Server Liam J. McGuffin, Kevin Bryson & David T. Jones

http://bioinf.cs.ucl.ac.uk/psipred/

The PSIPRED protein structure prediction server allows you to submit a protein sequence, perform a prediction of your choice and receive the results of the prediction via e-mail. You may select one of three prediction methods to apply to your sequence:

PSIPRED - a highly accurate method for protein secondary structure prediction, **MEMSAT3** - our widely used transmembrane topology prediction method and **GenTHREADER** - a sequence profile based fold recognition method

LiveBench: Continuous Benchmarking of Structure Prediction Servers http://bioinfo.pl/meta/livebench.pl

Two main goals:

 \checkmark The program provides simple evaluation of the structure prediction servers from the point of view of a potential user. The evaluation of sensitivity and specificity of the available servers can help the user to develop sequence analysis strategies and to assess the confidence of the obtained predictions.

 \checkmark The program offers a simple weekly procedure for the prediction service providers, which can help to locate possible problems and tune the methods for best performance.

Meta-servers

 \checkmark are servers that use the results of other autonomous servers to produce a consensus prediction

 \checkmark outperform all the individual autonomous servers

 \checkmark cannot run independently, explicitly requiring as input the predictions of at least one other participating server

✓ attempt to automate the process of selecting the top model

Meta-servers

PCONS/PMOD series

http://www.sbc.su.se/~bjorn/Pcons5

3D-SHOTGUN: INUB + SP3 + PROSPECTOR

http://inub.cse.buffalo.edu

3D-JURY series

http://bioinfo.pl/meta/

PROTINFO

http://protinfo.compbio.washington.edu

Meta-BASIC, ORFeus, FFAS03, SP3, Robetta...

3D-jury consensus approach http://bioinfo.pl/meta/

HetaServer	The BioInfoBank Meta Server offers a gateway to well-benchmarked protein structure and function models collected from the predictions servers are assesset using the powerfull 3D-jury consenses		uctural
	Submit Queue Servers Benchmarks Join Help		
Ads by Gooocoode Find Secondary Structures RAPTOR: casp5 winner, gives quality structure prediction. Free Demo. www.bioinformaticssolut	Structure Prediction Meta Server Input Page 0 jobs from 193.146.11. in the last week Your E-mail: Target Name: Amino Acid Sequence only (in one letter code):	Skip: PDB-Blast ESyPred3D GRDB FFAS03 Sam-T02	Queue: 2 26 2 2 2 2
Protein Analysis Software User-friendly and Integrated Tools Fully Functional Demo Available!	Reset Clear Format Submit	 Superfamily INUB FUGUE2 3D-PSSM mGenThreader psipred 	1 67 104 2
DiAlign for DNA & Protein True multiple alignment of segments Not Needleman/Wunsch based. N/Cl www.genomatix.de	Submit domains separately Remove coiled coil regions Check LiveBench for evaluation of the reliability of the servers Results are stored only for 1 month Jobs queued for more than 7 days for servers with queue>30 are skipped Use is limited to 30 jobs per week per domain Contact us in case of problems with interpretation of results Some servers return only models, no alignments (target sequence is shown) Results published on this server are public and can not be used for patenting	pspred profsec 3D-Jury	2 3

The Structure Prediction Meta Server provides access to various fold recognition, function prediction and local structure prediction methods.

www.bakerlab.org

http://robetta.bakerlab.org/index.html chain Protein Structure Prediction Server

BETTA

ROBETTA provides both ab initio and comparative models of protein domains. It uses the ROSETTA fragment insertion method [Símons et al. / Mol Bíol 1997;268:209-225]. Comparatíve models are built from Parent PDBs detected by UW-PDB-BLAST, FFAS03, or 3Djury-A1 and aligned by the K*SYNC alignment method. Loop regions are assembled from fragments and optimized to fit the aligned template structure. The procedure is fully automated.

Structure Validation Servers

• PROCHECK

- http://www.biochem.ucl.ac.uk/~roman/procheck/procheck.html

• WHAT IF

- http://swift.cmbi.kun.nl/WIWWWI/

• Verify3D

- http://www.doe-mbi.ucla.edu/Services/Verify_3D/

• VADAR

- http://redpoll.pharmacy.ualberta.ca

Procheck

The WHAT IF Web Interface

http://swift.cmbi.kun.nl/WIWWWI/

Name check: checks the nomenclature of torsion angles.
Coarse Packing Quality Control: checks the normality of the local environment of amino acids
Anomalous bond lengths: lists bond lengths that deviate more than 4 sigma from normal.
Planarity: checks if planar groups are planar enough.
Fine Packing Quality Control: checks the normality of the local environment of amino acids
Collisions with symmetry axes: lists atoms that are too close to symmetry axes.
Hand check: lists atoms with a chirality that deviates more than 4 sigma from normal.
Ramachandran plot evaluation: determines the quality of a Ramachandran plot.
Omega: checks if the distribution of omega angles is normal.
Proline puckering: checks if proline pucker falls in a normal range.
Anomalous bond angles: lists bond angles that deviate more than 4 sigma from normal.

VADAR Version 1.4

Please <u>click here</u> to do multiple chain analysis Note: VADAR cannot process proteins > 2000 residues

VADAR (Volume, Area, Dihedral Angle Reporter) is a compilation of more than 15 different algorithms and programs for analyzing and assessing peptide and protein structures from their PDB coordinate data. The results have been validated through extensive comparison to published data and careful visual inspection. The VADAR web server supports the submission of either PDB formatted files or PDB accession numbers. VADAR produces extensive tables and high quality graphs for quantitatively and qualitatively assessing protein structures determined by X-ray crystallography, NMR spectroscopy, 3D-threading or homology modelling.

Please cite the following: Leigh Willard, Anuj Ranjan, Haiyan Zhang, Hassan Monzavi, Robert F. Boyko, Brian D. Sykes, and David S. Wishart "VADAR: a web server for quantitative evaluation of protein structure quality" Nucleic Acids Res. 2003 July 1; 31 (13): 3316.3319

For additional information on how to run VADAR or to process multiple chains via VADAR, click this button HELP

Select desired PDB file

Browse...

Note: the uploaded file must be in PDB format in order for this form to work. Refer to the $\ensuremath{\textbf{HELP}}$ button above.

OR Enter PDB accession number 1ad5

(Please specify the chain e.g. 2TRXB (2TRX chain B), If not specified, the first chain will be processed. e.g. 2TRX)

